β * – Compactness and β * – Connectedness

RAJA MOHAMMAD LATIF Department of Mathematics and Natural Sciences Prince Mohammad Bin Fahd University P.O. Box 1664 Al Khobar KINGDOM OF SAUDI ARABIA

Abstract: - In 2014 Mubarki, Al-Rshudi, and Al-Juhani introduced and studied the notion of a set in general topology called β^* -open sets and investigated its fundamental properties and studied the relationships between β^* -open set and other topological sets including β^* -continuity in topological spaces. The objective of this paper is to introduce the new concepts called β^* -compact space, countably β^* -compact space, β^* -Lindelof space, almost β^* -compact space, mildly β^* -compact space and β^* -connected space in general topology and investigate several properties and characterizations of these new concepts in topological spaces.

Key-Words: - Topological space, generalized open set, β^* -open set, β^* -compact space, countably β^* -compact space, β^* -Lindelof space, almost β^* -compact space, mildly β^* -compact space, β^* -connected space.

Received: November 14, 2019. Revised: April 12, 2020. Accepted: May 8, 2020. Published: May 24, 2020.

1 Introduction

The concept of supra topology was introduced by A. S. Mashhour et al [13] in the year 1983. They studied about s-continuous functions and s*-continuous functions. In 2008, R. Devi et al [5] introduced the concept of supra α – open sets and supra α – continuous maps. Jamal. M. Mustafa [16] studied about supra b-compact and supra b-Lindelof spaces. Vidyarani et al in [30] introduced the concept of supra N-compact, countably supra N-compact, supra N-Lindelof and supra N – connectedness and investigated about their relationships using the concept of continuity. In 2013, Missier and Rodrigo [14] introduced new class of set in general topology called an α – open (supra α – open) set. In 2014 Mubarki, Al-Rshudi, and Al-Juhani [15] introduced and studied the notion of set in general topology called β^* -open sets and investigated its fundamental properties and studied the relationship between β^* -open set and other topological sets including β^* -continuity in topological spaces. The objective of this paper is to introduce the new concepts called β^* -compact space, countably β^* -compact space, β^* -Lindelof space, almost β^* -compact space, mildly β^* -compact space and β^* -connected space in general topology and investigate several properties and characterizations of these new concepts in topological spaces.

Throughout this paper (X, τ) or simply by X we denote topological space on which no separation axioms are assumed unless explicitly stated and $f:(X, \tau) \rightarrow (Y, \sigma)$ means a mapping f from a topological space X to a topological space Y. If U is a set and x is a point in X, then N(x), Int(U), Cl(U) and U^c denote respectively, the neighbourhood system of x, the interior of U, the closure of U and complement of U.

2 Preliminaries

Definition 2.1. A subset A of a topological space X is called semi-open set if $A \subseteq Cl [Int(A)]$.

Definition 2.2. A subset A of a topological space X is called α – open set if $A \subseteq Int[Cl(Int(A))]$.

Definition 2.3. A subset A of a topological space X is called β -open set if $A \subseteq Cl [Int(Cl(A))]$.

Definition 2.4. A subset A of a topological space X is called pre-open set if $A \subseteq Int[Cl(A)]$.

Definition 2.5. A subset A of a topological space X is said to be b – open set if $A \subseteq Cl[Int(A)] \cup Int[Cl(A)]$.

Definition 2.6. Let (X, τ) be a topological space. Then a point $x \in X$ is called the δ -cluster point of $A \subseteq X$ if $A \ Int [Cl(U)] \neq \phi$ for every open set U of X containing x. The set of all cluster points of A is called the δ -cluster points of A, denoted by $Cl_{\delta}(A)$. A subset $A \subseteq X$ is called δ -closed if $A = Cl_{\delta}(A)$.

Definition 2.7. Let (X, τ) be a topological space and $A \subseteq X$. Then A is called δ -open set if its compliment X - A is δ -closed in X. The collection of all δ -open sets in a topological space (X, τ) forms a topology τ_{δ} on X, weaker than τ and the class of all regular open sets in τ forms an open basis for τ_{δ} .

Definition 2.8. A subset A of a topological space X is called e*-open set if $A \subseteq Cl [Int(Cl_{\delta}(A))]$.

Definition 2.9. Let (X, τ) be a topological space. Then a subset A of X is said to be β^* -open if $A \subseteq Cl[Int(Cl(A))] \cup Int[Cl_{\delta}(A)]$. The family of all β^* -open subsets of a topological space (X, τ) will be as always denoted by $\beta^*O(X)$.

Definition 2.10. A subset *A* of a topological space (X, τ) is said to be a β^* -closed set if Int[Cl(Int(A))]I $Cl[Int_{\delta}(A)] \subseteq A$.

The family of all β^* -closed subsets of a topological space (X, τ) will be as denoted by $\beta^*C(X)$.

Remark 2.11. The following diagram holds for each a subset *A* of *X*.

open set $\rightarrow \alpha$ – open set \rightarrow preopen set \rightarrow b – open set $\rightarrow \beta$ – open set $\rightarrow \beta^*$ – open set $\rightarrow e^*$ – open set

Raia Mohammad Latif

Theorem 2.12. Let (X, τ) be a topological space. Then the following assertions hold:

(1) The arbitrary union of β^* -open sets is β^* -open.

(2) The arbitrary intersections of β^* -closed is β^* -closed.

Proof. (1) Let $\{A_i : i \in I\}$ be a family of β^* -open sets. Then $A_i \subseteq Cl [Int(Cl(A_i))] \cup Int [Cl_{\delta}(A_i)]$ and therefore immediately it follows that $\bigcup_{i \in I} A_i \subseteq \bigcup_{i \in I} (Cl [Int(Cl(A_i))] \cup Int [Cl_{\delta}(A_i)]) \subseteq$ $Cl [Int(Cl(\bigcup_{i \in I} A_i))] \cup Int [Cl_{\delta}(\bigcup_{i \in I} A_i)]$, for all $i \in I$. Thus $\bigcup_{i \in I} A_i$ is β^* -open.

(2) It follows from (1).

Remark 2.13. The next example shows that the intersection of any two β^* -open sets is not β^* -open.

Example 2.14. Let $X = \{1, 2, 3\}$ with topology $\tau = \{\phi, \{1\}, \{2\}, \{1, 2\}, X\}$. Then $A = \{1, 3\}$ and $B = \{2, 3\}$ are β^* – open sets. But A I B = $\{3\}$ is not β^* – open.

Definition 2.15. Let (X, τ) be a topological space. Then:

(1) The union of all β^* -open sets of X contained in A is called the β^* -interior of A and is denoted by β^* -Int(A).

(2) The intersection of all β^* -closed sets of X containing A is called the β^* -closure of A and is denoted by β^* -Cl(A).

Theorem 2.16. Let *A*, *B* be two subsets of a topological space (X, τ) . Then the following assertions are true:

(1)
$$\beta^* - Cl(X) = X$$
 and $\beta^* - Cl(\phi) = \phi$.

(2)
$$A \subseteq \beta^* - Cl(A)$$
.

(3) If
$$A \subseteq B$$
, then $\beta^* - Cl(A) \subseteq \beta^* - Cl(B)$.

(4) $x \in \beta^* - Cl(A)$ if and only if for each a β^* -open set U containing x, U I $A \neq \phi$.

(5) A is
$$\beta^*$$
-closed set if and only if $A = \beta^* - Cl(A)$.

(6)
$$\beta^* - Cl[\beta^* - Cl(A)] = \beta^* - Cl(A).$$

(7)
$$\beta^* - Cl(A) \cup \beta^* - Cl(B) \subseteq \beta^* - Cl(A \cup B).$$

(8)
$$\beta^* - Cl(AI B) \subseteq \beta^* - Cl(A)I \beta^* - Cl(B).$$

Theorem 2.17. Let *A*, *B* be two subsets of a topological space (X, τ) . Then the following assertions are true:

(1)
$$\beta^* - Int(X) = X$$
 and $\beta^* - Int(\phi) = \phi$.
(2) $\beta^* - Int(A) \subseteq A$.

(3) If
$$A \subseteq B$$
, then $\beta^* - Int(A) \subseteq \beta^* - Int(B)$.

(4) $x \in \beta^* - Int(A)$ if and only if there exists β^* -open set *W* such that $x \in W \subseteq A$.

(5) *A* is
$$\beta^*$$
-open set if and only if $A = \beta^* - Int(A)$.

(6)
$$\beta^* - Int \left[\beta^* - Int(A) \right] = \beta^* - Int(A).$$

(7)
$$\beta^* - Int(A \sqcup B) \subseteq \beta^* - Int(A) \sqcup \beta^* - Int(B).$$

(8)
$$\beta^* - Int(A) \cup \beta^* - Int(B) \subseteq \beta^* - Int(A \cup B).$$

Definition 2.18. Let X be a non-empty set. The subfamily $\mu \subseteq P(X)$ is said to be a supra topology on X if $\phi, X \in \mu$ and μ is closed under arbitrary unions. The pair (X, μ) is called a supra topological space. The elements of μ are said to be supra open in (X, μ) .

Complement of supra open sets are called supra closed sets.

Definition 2.19. A mapping $f:(X, \tau) \to (Y, \sigma)$ is said to be a β^* -continuous if $f^{-1}(V)$ is a β^* -open $(\beta^*-closed)$ set in X for each open (closed) set V in Y.

Definition 2.20. A mapping $f:(X,\tau) \to (Y,\sigma)$ is said to be a β^* -irresolute if $f^{-1}(V)$ is a β^* -open $(\beta^*$ -closed) set in X for X each β^* -open $(\beta^*$ -closed) set V in Y.

Definition 2.21. A mapping $f:(X, \tau) \rightarrow (Y, \sigma)$ is said to be a β^* -open (β^* -closed) if f(U) is a β^* -open (β^* -closed) set in Y for each open (closed) set U in X.

Definition 2.22. A set $A \subseteq X$ is said to be β^* -connected if A cannot be written as the union of two β^* -separated sets.

Definition 2.23. Let *X* be any nonempty set and $\tau \subseteq P(X)$. We say that τ is a supra topology on *X* if $\phi, X \in \tau$ and τ is closed under arbitrary union. The pair (X, τ) is called supra topological space. The elements of τ are called supra open sets in (X, τ) and complement of a supra open set is called a supra closed set.

Definition 2.24. A supra topological space is called supra compact (S-compact) if and only if every supra open cover of X has a finite sub cover.

Definition 2.25. A function $f:(X, \tau) \to (Y, \sigma)$ is called perfectly β^* -continuous if the inverse image $f^{-1}(V)$ of every β^* -open set V of Y is both open and closed in X.

Definition 2.26. A function $f:(X, \tau) \to (Y, \sigma)$ is called strongly β^* -continuous if the inverse image $f^{-1}(V)$ of every β^* -open V in Y is open in X.

Definition 2.27. A function $f:(X,\tau) \to (Y,\sigma)$ is called β^* -irresolute if the inverse image $f^{-1}(V)$ of every β^* -open V in Y is β^* -open in X.

3 β*-Compact Spaces

Definition 3.1. A collection $\{A_i : i \in I\}$ of β^* -open sets in a topological space (X, τ) is called a β^* -open cover of a subset *B* of *X* if $B \subseteq U\{A_i : i \in I\}$ holds.

Definition 3.2. A topological space (X, τ) is called β^* -compact if every β^* -open cover of X has a finite sub cover.

Definition 3.3. A subset *B* of a topological space (X, τ) is said to be β^* -compact relative to (X, τ) if, for every collection $\{A_i : i \in I\}$ of β^* -open subsets of *X* such that $B \subseteq U\{A_i : i \in I\}$ there exists a finite subset I_0 of *I* such that $B \subseteq U\{A_i : i \in I_0\}$.

Definition 3.4. A subset *B* of a topological space (X, τ) is said to be β^* -compact if *B* is β^* -compact as a subspace of *X*.

Theorem 3.5. Every β^* -compact space is compact.

Proof. Let $\{A_i : i \in I\}$ be an open cover of (X, τ) . Since every open set in X is β^* -open in X. So $\{A_i : i \in I\}$ is a β^* -open cover of (X, τ) . Since (X, τ) is β^* -compact, β^* -open cover $\{A_i : i \in I\}$ of (X, τ) has a finite sub cover say $\{A_i : i = 1, 2, 3, ..., n\}$ for X. Hence (X, τ) is a compact space.

Theorem 3.6. Every β^* -closed subset of a β^* -compact space (X, τ) is β^* -compact, relative to X.

Proof. Let A be a β^* -closed closed subset of a topological space (X, τ) . Then A^c is β^* -open in (X, τ) . Let $\Gamma = \{A_i : i \in I\}$ be a β^* -open cover of A by β^* -open subsets of (X, τ) . Then $\Gamma^* = \Gamma \cup \{A^c\}$ is a β^* -open cover of (X, τ) . Then $\Gamma^* = \Gamma \cup \{A^c\}$ is a β^* -open cover of (X, τ) . That is $X = (\bigcup_{i \in I} A_i) \cup A^c$. By hypothesis (X, τ) is a β^* -compact space and hence Γ^* is reducible to a finite sub cover of (X, τ) say $X = (\bigcup_{i \in I_0} A_i) \cup A^c$ for some finite subset I_0 of I. But A and A^c are disjoint. Hence $A \subseteq \cup \{A_i : i \in I_0\}$. Thus β^* -open cover

Raja Mohammad Latif

 $\Gamma = \{A_i : i \in I\} \text{ of } A \text{ contains a finite sub cover. Hence} A \text{ is } \beta^* - \text{compact relative to } (X, \tau).$

Theorem 3.7. A β^* -continuous image of a β^* -compact space is compact.

Proof. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a β^* -continuous map from a β^* -compact (X, τ) onto a topological space (Y, σ) . Let $\Gamma = \{A_i : i \in I\}$ be an open cover of Y. Therefore $f^{-1}(\Gamma) = \{f^{-1}(A_i) : i \in I\}$ is a β^* -open cover of X, as f is β^* -continuous. Since X is β^* -compact, the β^* -open cover $f^{-1}(\Gamma) = \{f^{-1}(A_i) : i \in I\}$ of X, has a finite sub cover say $\{f^{-1}(A_i) : i = 1, 2, 3, ..., n\}$. Therefore $X = \mathbf{U}^n f^{-1}(A)$ which implies $X = f(X) = \mathbf{U}^n A$

 $X = \bigcup_{i=1}^{n} f^{-1}(A_i), \text{ which implies } Y = f(X) = \bigcup_{i=1}^{n} A_i.$ That is $\{A_i : i = 1, 2, 3, ..., n\}$ is a finite sub cover of $\Gamma = \{A_i : i \in I\}.$ Hence (Y, σ) is compact.

Theorem 3.8. Suppose that a function $f:(X,\tau) \rightarrow (Y,\sigma)$ is β^* -irresolute and a subset S of X is β^* -compact relative to (X,τ) , then the image f(S) is β^* -compact relative to (Y,σ) .

Proof. Let $\Gamma = \{A_i : i \in I\}$ be a collection of β^* -open cover of (Y, σ) , such that $f(S) \subseteq U\{A_i : i \in I\}$. Since f is β^* -irresolute. So $S \subseteq U\{f^{-1}(A_i) : i \in I\}$, where $\{f^{-1}(A_i) : i \in I\} \subseteq \beta^* - O(X, \tau)$. Since S is β^* -compact relative to (X, τ) , there exists a finite sub collection $\{f^{-1}(A_1), f^{-1}(A_2), \ldots, f^{-1}(A_n)\}$ such that $S \subseteq U\{f^{-1}(A_1), f^{-1}(A_2), \ldots, f^{-1}(A_n)\}$. That is $f(S) \subseteq U\{A_1, A_2, \ldots, A_n\}$. Hence f(S) is β^* -compact relative to (Y, σ) .

Theorem 3.9. Suppose that a map $f:(X, \tau) \to (Y, \sigma)$ is strongly β^* -continuous map from a compact space (X, τ) onto a topological space (Y, σ) , then (Y, σ) is β^* -compact.

Proof. Let $\{A_i : i \in I\}$ be a β^* -open cover of (Y, σ) . Since f is strongly β^* -continuous, $\{f^{-1}(A_i) : i \in I\}$ is an open cover of (X, τ) . Again, since (X, τ) is compact, the open cover

 $\begin{cases} f^{-1}(A_i): i \in I \end{cases} \text{ of } (X, \tau) \text{ has a finite sub cover say} \\ \begin{cases} f^{-1}(A_i): i = 1, 2, 3, ..., n \end{cases}.$ Therefore $X = U \begin{cases} f^{-1}(A_i): i = 1, 2, 3, ..., n \end{cases}, \text{ which implies} \\ f(X) = U \lbrace A_i: i = 1, 2, 3, ..., n \rbrace, \text{ so that} \\ Y = U \lbrace A_i: i = i = 1, 2, 3, ..., n \rbrace. \text{ That is } \lbrace A_1, A_2, ..., A_n \rbrace \text{ is a} \\ \text{finite sub cover of } \lbrace A_i: i \in I \rbrace \text{ for } (Y, \sigma). \text{ Hence} \\ (Y, \sigma) \text{ is } \beta^* - \text{compact.} \end{cases}$

Theorem 3.10. Suppose that a map $f:(X, \tau) \rightarrow (Y, \sigma)$ is perfectly β^* -continuous map from a compact space (X, τ) onto a topological space (Y, σ) . Then (Y, σ) is β^* -compact.

Proof. Let $\{A_i : i \in I\}$ be a β^* -open cover of (Y, σ). Since f is perfectly β^* -continuous, $\{f^{-1}(A_i): i \in I\}$ is an open cover of (X, τ) . Again, (X, τ) is compact, the open since cover $\{f^{-1}(A_i): i \in I\}$ of (X, τ) has a finite sub cover say $\{f^{-1}(A_i): i = 1, 2, 3, ..., n\}.$ Therefore $X = U \{ f^{-1}(A_i) : i = 1, 2, 3, ..., n \},\$ which implies $f(X) = U\{A_i : i = 1, 2, 3, ..., n\},\$ so that $Y = \bigcup \{A_i : i = 1, 2, 3, ..., n\}$. That is $\{A_1, A_2, ..., A_n\}$ is a finite sub cover of $\{A_i : i \in I\}$ for (Y, σ) . Hence (Y, σ) is β^* -compact.

Theorem 3.11. Suppose that a function $f:(X,\tau) \rightarrow (Y,\sigma)$ is β^* -irresolute map from a β^* -compact space (X,τ) onto a topological space (Y,σ) . Then (Y,σ) is β^* -compact.

Proof. Let $f:(X,\tau) \to (Y,\sigma)$ be a β^* -irresolute map from a β^* -compact space (X,τ) onto a topological space (Y,σ) . Let $\{A_i: i \in I\}$ be a β^* -open cover of (Y,σ) . Then $\{f^{-1}(A_i): i \in I\}$ is a β^* -open cover of (X,τ) , since f is β^* -irresolute. As (X,τ) is β^* -compact, the β^* -open cover $\{f^{-1}(A_i): i \in I\}$ of (X,τ) has a finite sub cover say $\{f^{-1}(A_i): i = 1, 2, 3, ..., n\}$. Therefore $X = U\{f^{-1}(A_i): i = 1, 2, 3, ..., n\}$, which implies $f(X) = U\{A_i : i = 1, 2, 3, ..., n\}, \quad \text{so} \quad \text{that}$ $Y = U\{A_i : i = 1, 2, 3, ..., n\}. \text{ That is } \{A_1, A_2, ..., A_n\} \text{ is a}$ finite sub cover of $\{A_i : i \in I\}$ for (Y, σ) . Hence (Y, σ) is β^* -compact.

Theorem 3.12. If (X, τ) is compact and every β^* -closed set in X is also closed in X, then (X, τ) is β^* -compact.

Proof. Let $\{A_i : i \in I\}$ be a β^* -open cover of X. Since every β^* -closed set in X is also closed in X. Thus $\{X - A_i : i \in I\}$ is a closed cover of X and hence $\{A_i : i \in I\}$ is an open cover of X. Since (X, τ) is compact. So there exists a finite sub cover $\{A_i: i = 1, 2, 3, ..., n\}$ $\{A_i: i \in I\}$ that of such $X = U \{ A_i : i = 1, 2, 3, ..., n \}.$ Hence (X, τ) is β * –compact.

Theorem 3.13. A topological space (X, τ) is β^* -compact if and only if every family of β^* -closed sets of (X, τ) having finite intersection property has a non empty intersection.

Suppose (X, τ) is β^* -compact. Proof. Let $\{A_i : i \in I\}$ be a family of β^* -closed sets with finite Suppose intersection property. $\begin{bmatrix} A_i = \phi, \end{bmatrix}$ then $X - \mathbf{I}\left(\left\{A_i : i \in I\right\}\right) = X.$ This implies $\mathbf{U}\left\{\left(X-A_{i}\right):i\in I\right\}=X.$ Thus the cover $\{(X - A_i) : i \in I\}$ is a β^* -open cover of (X, τ) . Then as (X, τ) is β^* -compact, the β^* -open cover $\{(X - A_i) : i \in I\}$ has a finite sub cover say $\{(X - A_i): i = 1, 2, 3, ..., n\}.$ This implies that $X = U\{(X - A_i) : i = 1, 2, 3, ..., n\}$ which implies $X = X - I \{A_i : i = 1, 2, 3, ..., n\},\$ which implies $X - X = X - [X - I \{A_i : i = 1, 2, 3, ..., n\}],$ which implies $\phi = I \{A_i : i = 1, 2, 3, ..., n\}.$ This disproves the assumption. Hence I $\{A_i : i \in I\} \neq \phi$.

Conversely, suppose (X, τ) is not β^* -compact. Then there exits a β^* -open cover of (X, τ) say $\{G_i : i \in I\}$ having no finite sub cover. This implies that for any finite sub family $\{G_i : i = 1, 2, 3, ..., n\}$ of $\{G_i : i \in I\}$, we

 $U\{G_i: i=1,2,3,...,n\} \neq X,$ which have implies $X - (U \{G_i : i = 1, 2, 3, ..., n\}) \neq X - X,$ therefore I $\{X - G_i : i = 1, 2, 3, ..., n\} \neq \phi$. Then the family $\{X - G_i : i \in I\}$ of β^* -closed sets has a finite intersection property. Also by assumption $I \{X - G_i : i \in I\} \neq \phi$ which implies $X - (U\{G_i : i \in I\}) \neq \phi$, so that $U\{G_i : i \in I\} \neq X$. This implies $\{G_i : i \in I\}$ is not a cover of (X, τ) . This disproves the fact that $\{G_i : i \in I\}$ is a cover for (X, τ) . Therefore a β^* -open cover $\{G_i : i \in I\}$ of (X, τ) has a finite sub cover $\{G_i : i = 1, 2, 3, ..., n\}$. Hence (X, τ) is β * -compact.

Theorem 3.14. Let A be a β^* -compact set relative to a topological space X and B be a β^* -closed subset of X. Then AI B is β^* -compact relative to X.

Proof. Let A be β^* -compact relative to X. Let $\{A_i : i \in I\}$ be a cover of AI B by β^* -open sets in X. Then $\{A_i : i \in I\} \cup \{B^C\}$ is a cover of A by β^* -open sets in X, but A is β^* -compact relative so there to Χ. exists а finite subset $I_0 = \{i_1, i_2, i_3, \dots, i_n\} \subseteq I$ such that $A \subseteq \left(\bigcup \{ A_{i_k} : k = 1, 2, 3, \dots, n \} \right) \bigcup B^C$. Then it follows $AI \quad B \subseteq U \left\{ A_{i_k} I \quad B : k = 1, 2, 3, \dots, n \right\} \subseteq$ that $U\{A_{i_k}: k = 1, 2, 3, ..., n\}$. Hence AI B is β^* -compact.

Theorem 3.15. Suppose that a function $f:(X,\tau) \rightarrow (Y,\sigma)$ is β^* -irresolute and a subset B of X is β^* -compact relative to X. Then f(B) is β^* -compact relative to Y.

Proof. Let $\{A_i : i \in I\}$ be a cover of f(B) by β^* -open subsets of Y. Since f is β^* -irresolute. Then $\{f^{-1}(A_i) : i \in I\}$ is a cover of B by β^* -open subsets of X. Since B is β^* -compact relative to X, $\{f^{-1}(A_i) : i \in I\}$ has a finite sub cover say $\{f^{-1}(A_1), f^{-1}(A_2), ..., f^{-1}(A_n)\}$ for B. Then it implies that $\{A_i : i = 1, 2, 3, ..., n\}$ is a finite sub cover of

Raia Mohammad Latif

 $\{A_i : i \in I\}$ for f(B). So f(B) is β^* -compact relative to Y.

Definition 3.16. Let (X, τ) be a topological space and let E be a subset of X. Let $\tau_{E}^{i\alpha} = \{AI \ E : A \in \beta^{*} - O(X, \tau)\}$. Then $(E, \tau_{E}^{i\alpha})$ is a supra topological space.

Theorem 3.17. Let (X, τ) be a topological space and let *E* be a subset of *X*. Then $(E, \tau_E^{i\alpha})$ is supra compact if and only if for any β^* -open cover Γ of *E* has a finite sub cover of *E*.

Proof. Suppose E is supra compact. Let $\Gamma \subseteq \beta^* - O(X, \tau)$ such that $E \subset U\Gamma$. Let $\Gamma_E = \{ A \mid E : A \in \Gamma \}.$ Then $E = U \Gamma_E$ and $\Gamma_E \subseteq \tau_E^{i\alpha}$. By hypothesis there exists a finite subset $\Gamma_{E}^{*} = \{A_{i} \mid E: i = 1, 2, 3, \dots, n\} \subseteq \Gamma_{E} \text{ such that } E = U \Gamma_{E}^{*}.$ Then $\Gamma^* = \{A_i : i = 1, 2, 3, ..., n\} \subseteq \Gamma$ and $E \subseteq U\Gamma^*$.

Conversely, let $\Upsilon = \{A_i \mid E : i \in I\} \subseteq \mathcal{T}_E^{i\alpha}$ such that $E = U\Upsilon$. Then $\Upsilon^* = \{A_i : i \in A\}$ is a β^* -open covering of E. By hypothesis there exists $\Upsilon^{**} = \{A_i : i = 1, 2, 3, ..., n\}$ a finite subset of Υ^* such that $E \subseteq U\Upsilon^{**}$. Then $\Upsilon^{\#} = \{A_i \mid E : i = 1, 2, 3, ..., n\}$ is a finite subset of Υ such that $E \subseteq U\Upsilon^{**}$. Then $\Upsilon^{\#} = \{A_i \mid E : i = 1, 2, 3, ..., n\}$ is a finite subset of Υ such that $E = U\Upsilon^{\#}$. This proves that $(E, \mathcal{T}_E^{i\alpha})$ is supra compact.

4 Countably β* –Compact Spaces

In this section, we present the concept of countably β^* -compactness and its properties.

Definition 4.1. A topological space (X, τ) is said to be countably β^* -compact if every countable β^* -open cover of X has a finite sub cover.

Theorem 4.2. If (X, τ) is a countably β^* -compact space, then (X, τ) is countably compact.

Proof. Let (X, τ) be a countably β^* -compact space. Let $\{A_i : i \in I\}$ be a countable open cover of (X, τ) . Since $\tau \subseteq \beta^* - O(X, \tau)$. So $\{A_i : i \in I\}$ is a countable β^* -open cover of (X, τ) . Since (X, τ) is countably β^* -compact, therefore countable β^* -open cover $\{A_i : i \in I\}$ of (X, τ) has a finite sub cover say $\{A_i : i = 1, 2, 3, ..., n\}$ for X. Hence (X, τ) is a countably compact space.

Theorem 4.3. If (X, τ) is countably compact and every β^* -closed subset of X is closed in X, then (X, τ) is countably β^* -compact.

Proof. Let (X, τ) be a countably compact space. Let $\{A_i : i \in I\}$ be a countable β^* -open cover of (X, τ) . Since every β^* -closed subset of X is closed in X. Thus every β^* -open set in X is open in X. Therefore $\{A_i : i \in I\}$ is a countable open cover of (X, τ) . Since (X, τ) is countable open cover of (X, τ) . Since (X, τ) is countably compact, so countable open cover $\{A_i : i \in I\}$ of (X, τ) has a finite sub cover say $\{A_i : i = 1, 2, 3, ..., n\}$ for X. Hence (X, τ) is a countably β^* -compact space.

Theorem 4.4. Every β^* -compact space is countably β^* -compact.

Proof. Let (X, τ) be a β^* -compact space. Let $\{A_i : i \in I\}$ be a countable β^* -open cover of (X, τ) . Since (X, τ) is β^* -compact, so β^* -open cover $\{A_i : i \in I\}$ of (X, τ) has a finite sub cover say $\{A_i : i = 1, 2, 3, ..., n\}$ for (X, τ) . Hence (X, τ) is countably β^* -compact space.

Theorem 4.5. Let $f:(X,\tau) \to (Y,\sigma)$ be а β^* -continuous onjective mapping. If X is countably β^* -compact space, then (Y, σ) is countably compact. **Proof.** Let $f:(X,\tau) \to (Y,\sigma)$ be a β^* -continuous map from a countably β^* -compact space (X, τ) onto topological space (Y, σ) . Let $\{A_i : i \in I\}$ be a а countable open cover of Y. Then $\{f^{-1}(A_i): i \in I\}$ is a countable β^* -open cover of X, as f is β^* -continuous. Since X is countably β^* -compact, the countable β^* -open cover $\{f^{-1}(A_i): i \in I\}$ of X has a finite sub cover say $\{f^{-1}(A_i): i = 1, 2, 3, ..., n\}$. $X = U\{f^{-1}(A_i): i = 1, 2, 3, ..., n\},\$ Therefore which implies $Y = f(X) = U\{A_i : i = 1, 2, 3, ..., n\}$. That is $\{A_i : i = 1, 2, 3, ..., n\}$ is a finite sub cover of $\{A_i : i \in I\}$ for *Y*. Hence *Y* is countably compact.

Theorem 4.6. Suppose that a map $f:(X, \tau) \to (Y, \sigma)$ is perfectly β^* -continuous map from a countably compact space (X, τ) onto a topological space (Y, σ) . Then (Y, σ) is countably β^* -compact.

Proof. Let $\{A_i : i \in I\}$ be a countable β^* -open cover of (Y, σ) . Since f is perfectly β^* -continuous, $\{f^{-1}(A_i): i \in I\}$ is a countable open cover of (Y, σ) . Again, since (X, τ) is countably β^* -compact, the countable open cover $\{f^{-1}(A_i): i \in I\}$ of (X, τ) has a finite sub cover say $\{f^{-1}(A_i): i = 1, 2, 3, ..., n\}$. Therefore $X = U\{f^{-1}(A_i): i = 1, 2, 3, ..., n\}$, which implies $f(X) = U\{A_i: i = 1, 2, 3, ..., n\}$, so that $Y = U\{A_i: i = 1, 2, 3, ..., n\}$. That is $\{A_1, A_2, ..., A_n\}$ is a finite sub cover of $\{A_i: i \in I\}$ for (Y, σ) . Hence (Y, σ) is countably β^* -compact.

Theorem 4.7. Suppose that a map $f:(X, \tau) \rightarrow (Y, \sigma)$ is strongly β^* -continuous map from a countably compact space (X, τ) onto a topological space (Y, σ) . Then (Y, σ) is countably β^* -compact.

Proof. Let $\{A_i : i \in I\}$ be a countable β^* -open cover of (Y, σ) . Since f is strongly β^* -continuous, $\{f^{-1}(A_i) : i \in I\}$ is a countable open cover of (X, τ) . Again, since (X, τ) is countably compact, the countable supra open cover $\{f^{-1}(A_i) : i \in I\}$ of (X, τ) has a finite sub cover say $\{f^{-1}(A_i) : i = 1, 2, 3, ..., n\}$. Therefore $X = U\{f^{-1}(A_i) : i = 1, 2, 3, ..., n\}$, which implies $f(X) = U\{A_i : i = 1, 2, 3, ..., n\}$, so that $Y = U\{A_i : i = 1, 2, 3, ..., n\}$. That is $\{A_1, A_2, ..., A_n\}$ is a finite sub cover of $\{A_i : i \in I\}$ for (Y, σ) Hence (Y, σ) is countably β^* -compact.

Theorem 4.8. The image of a countably β^* -compact space under a β^* -irresolute map is countably β^* -compact.

Proof. Suppose that a map $f:(X,\tau) \to (Y,\sigma)$ is β^* -irresolute from a countably β^* -compact space topological space (Y, σ) . Let (X, τ) onto a $\{A_i : i \in I\}$ be a countable β^* -open cover of Then $\{f^{-1}(A_i): i \in I\}$ is a countable (Y, σ) . cover of (X, τ) , β^* -open since f is β^* -irresolute. As (X, τ) is countably β^* -compact, the countable β^* -open cover $\{f^{-1}(A_i): i \in I\}$ of (X, τ) has finite sub а cover say $\{f^{-1}(A_i): i = 1, 2, 3, ..., n\}.$ Then it follows that $X = U\{f^{-1}(A_i): i = 1, 2, 3, ..., n\},\$ which implies $f(X) = U\{A_i : i = 1, 2, 3, ..., n\},\$ so that $Y = U\{A_i : i = 1, 2, 3, ..., n\}$. That is $\{A_1, A_2, ..., A_n\}$ is a finite sub cover of $\{A_i : i \in I\}$ for (Y, σ) . Hence (Y, σ) is countably β^* -compact.

Definition 4.9. Let (X, τ) be a topological space and $x \in X$. A point x is said to be β^* -limit point of $A \subseteq X$ provided that every β^* -neighbourhood of x contains at least one point of A different from x.

Theorem 4.10. Every infinite subset of a β^* -compact space has a β^* -limit point.

Proof. Let A be an infinite subset of a β^* -compact space (X, τ) . Assume A does not have a β^* -limit point. Then for each $x \in X$, there exists a β^* -open set G_x containing at most one point of A. Now, the collection $\Lambda = \{G_x : x \in X\}$ forms a β^* -open cover of X. Since X is β^* -compact, therefore there exist $x_1, x_2, ..., x_n \in X$ such that $X = \bigcup_{i=1}^{i=n} G_{x_i}$. Therefore X has at most n points of A. This implies that A is finite. But this contradicts that A is infinite. Thus A has a β^* -limit point.

5 β^* -Lindelof Spaces

In this section, we concentrate on the concept of β^* -Lindelof space and its properties.

Definition 5.1. A topological space (X, τ) is said to be β^* -Lindelof space if every β^* -open cover of X has a countable sub cover.

Theorem 5.2. Every β^* -Lindelof space (X, τ) is Lindeloff space.

Proof. Let (X, τ) be a β^* -Lindelof space. Let $\{A_i : i \in I\}$ be an open cover of (X, τ) . Since $\tau \subseteq \beta^* - O(X, \tau)$. Therefore $\{A_i : i \in I\}$ is a β^* -open cover of (X, τ) . Since (X, τ) is β^* -Lindelof space. So there exists a countable subset I_0 of I such that $\{A_i : i \in I_0\}$ is a β^* -open sub cover of (X, τ) . Hence (X, τ) is a Lindelof space.

Theorem 5.3. Every β^* -compact space is β^* -Lindelof.

Proof. Let (X, τ) be a β^* -compact space. Let $\{A_i : i \in I\}$ be a β^* -open cover of (X, τ) . Since (X, τ) is β^* -compact space. Then $\{A_i : i \in I\}$ has a finite sub cover say $\{A_i : i = 1, 2, 3, ..., n\}$. Since every finite sub cover is always countable sub cover and therefore $\{A_i : i = 1, 2, 3, ..., n\}$. is countable sub cover of $\{A_i : i \in I\}$. Hence (X, τ) is β^* -Lindelof space.

Theorem 5.4. Every β^* -closed subset of a β^* -Lindelof space is β^* -Lindelof.

Proof. Let *F* be a β^* -closed subset of *X* and $\{G_i : i \in I\}$ be β^* -open cover of *F*. Then F^c is β^* -open and $F \subseteq \bigcup\{G_i : i \in I\}$. Hence $X = (\bigcup\{G_i : i \in I\}) \bigcup F^c$. Since *X* is β^* -Lindelof, then $X = (\bigcup\{G_i : i \in I_0\}) \bigcup F^c$ for some countable subset I_0 of *I*. Therefore $F \subseteq \bigcup\{G_i : i \in I_0\}$. Thus *F* is β^* -Lindelof.

Theorem 5.5. Let A be a β^* -Lindelof subset of X and B be a β^* -closed subset of X. Then AI B is β^* -Lindelof.

Proof. Let $\{G_i : i \in I\}$ be a β^* -open cover of AI B. Then $A \subseteq (\bigcup_{i \in I} G_i) \cup B^c$. Since A is β^* -Lindelof, then there exists a countable subset I_0 of I such that $A \subseteq (\bigcup_{i \in I_0} G_i) \cup B^c$. Therefore AI $B \subseteq \bigcup_{i \in I_0} G_i$. Thus AI B is β^* -Lindelof.

Theorem 5.6. A topological space (X, τ) is β^* -Lindelof if and only if every collection of β^* -closed subsets of X satisfying the countable

intersection property, has, itself, a non-empty intersection.

Necessity: Let $\Lambda = \{F_i : i \in I\}$ be a collection of β^* -closed subsets of X which has the countable intersection property. Assume that $\prod_{i \in I} F_i = \phi$. Then $X = \bigcup_{i \in I} F_i^c$. Since X is β^* -Lindelof, then there exists a countable subset I_0 of I such that $X = \bigcup_{i \in I_0} F_i^c$. Therefore, $\prod_{i \in I_0} F_i = \phi$ contradicts that Λ has the countable intersection property. Thus Λ has, itself, a non-empty intersection. Sufficiency: Let $\{G_i : i \in I\}$ be a β^* -open cover of X. Suppose $\{G_i : i \in I\}$ has no countable sub cover. Then $X - \bigcup_{i \in J} G_i \neq \phi$, for any countable subset J of I. Now, $\prod_{i \in I} G_i^c \neq \phi$ implies that $\{G_i^c : i \in I\}$ is a collection of β^* -closed subsets of X which has the countable intersection property. Therefore $\prod_{i \in I} G_i^c \neq \phi$. Thus $X \neq \bigcup_{i \in I} G_i$ contradicts that $\{G_i : i \in I\}$ is a β^* -open cover of X. Hence X is β^* -Lindelof.

Theorem 5.7. A β^* -continuous image of a β^* -Lindelof space is a Lindeloff space.

Proof. Let $f:(X, \tau) \to (Y, \sigma)$ be a β^* -continuous map from a β^* -Lindelof space X onto a topological space Y. Let $\{A_i : i \in I\}$ be an open cover of Y. Then $\{f^{-1}(A_i): i \in I\}$ is a β^* -open cover of X, as f is β^* -continuous. Since X is β^* -Lindelof space, the β^* -open cover $\{f^{-1}(A_i): i \in I\}$ of X has a countable sub cover say $\{f^{-1}(A_i): i \in I_0\}$ for some countable set $I_0 \subseteq I$. Therefore $X = U\{f^{-1}(A_i): i \in I_0\}$, which implies $f(X) = U\{A_i: i \in I_0\}$, then $Y = U\{A_i: i \in I_0\}$. That is $\{A_i: i \in I_0\}$ is a countable sub cover of $\{A_i: i \in I\}$ for Y. Hence (Y, σ) is a Lindeloff space. **Theorem 5.8.** The image of a β^* -Lindelof space

under a β^* -irresolute map is β^* -Lindelof space. **Proof.** Suppose that a map $f:(X, \tau) \rightarrow (Y, \sigma)$ is a β^* -irresolute map from a β^* -Lindelof space (X, τ) onto a topological space (Y, σ) . Let $\{B_i : i \in I\}$ be a β^* -open cover of (Y, σ) . Since f is

 $\left\{f^{-1}(B_i): i \in I\right\}$ β * – irresolute. Therefore is а cover of (X, τ) . As β^* -open (X, τ) is β *-Lindelof the β^* -open space. cover $\{f^{-1}(B_i): i \in I\}$ of (X, τ) has a countable sub cover say $\{f^{-1}(B_i): i \in I_0\}$ for some countable set $I_0 \subseteq I$. $X = U \{ f^{-1}(B_i) : i \in I_0 \}, \text{ which}$ Therefore implies $f(X) = \bigcup \{B_i : i \in I_0\}$, so that $Y = \bigcup \{B_i : i \in I_0\}$. That is $\{B_i : i \in I_0\}$ a countable sub cover of $\{B_i : i \in I\}$ for Y. Hence (Y, σ) is a β^* -Lindelof space.

Theorem 5.9. If (X, τ) is β^* -Lindelof space and countably β^* -compact space, then (X, τ) is β^* -compact space.

Proof. Suppose (X, τ) is β^* -Lindelof space and countably β^* -compact space. Let $\{A_i : i \in I\}$ be a β^* -open cover of (X, τ) . Since (X, τ) is β^* -Lindelof space, $\{A_i : i \in I\}$ has a countable sub cover say $\{A_i : i \in I_0\}$ for some countable set $I_0 \subseteq I$. Therefore $\{A_i : i \in I_0\}$ is a countable β^* -open cover of (X, τ) . Again, since (X, τ) is countably β^* -compact space, $\{A_i : i \in I_0\}$ has a finite sub cover and say $\{A_i : i = 1, 2, 3, ..., n\}$. Therefore $\{A_i : i = 1, 2, 3, ..., n\}$ is a finite sub cover of $\{A_i : i \in I\}$ for (X, τ) . Hence (X, τ) is a β^* -compact space.

Theorem 5.10. If a function $f:(X,\tau) \rightarrow (Y,\sigma)$ is β^* -irresolute and a subset A of X is β^* -Lindelof relative to X, then f(A) is β^* -Lindelof relative to Y.

Proof. Let $\{B_i : i \in I\}$ be a cover of f(A) by β^* -open subsets of Y. By hypothesis f is β^* -irresolute and so $\{f^{-1}(B_i): i \in I\}$ is a cover of A by β^* -open subsets of X. Since A is β^* -Lindelof relative to X, $\{f^{-1}(B_i): i \in I\}$ has a countable sub cover say $\{f^{-1}(B_i): i \in I_0\}$ for A, where I_0 is a countable subset of I. Now $\{B_i: i \in I_0\}$ is a countable

sub cover of $\{B_i : i \in I\}$ for f(A). So f(A) is β^* -Lindelof relative to Y.

6 Almost β*–Compact Spaces

Definition 6.1. A topological space (X, τ) is called almost β^* -compact $(\beta^*$ -Lindelof) provided that every β^* -open cover of X has a finite (countable) sub collection, the β^* -closure of whose members cover X.

The proofs of the following four propositions are straightforward and therefore will be omitted.

Proposion 6.2. Every almost β^* -compact space is almost β^* -Lindelof space.

Proposion 6.3. Every β^* -compact space $(\beta^*$ -Lindelof space) is almost β^* -compact (almost β^* -Lindelof).

Proposion 6.4. Any finite (countable) topological space (X, τ) is almost β^* -compact (almost β^* -Lindelof).

Proposition 6.5. A finite (countable) union of almost β^* -compact (almost β^* -Lindelof) subsets of (X, τ) is almost β^* -compact (almost β^* -Lindelof).

Definition 6.6. A subset E of (X, τ) is called β^* -clopen provided that it is β^* -open and β^* -closed.

Theorem 6.7. Let *F* be a β^* -clopen subset of an almost β^* -compact (almost β^* -Lindelof) space (X, τ) . Then *F* is almost β^* -compact (almost β^* -Lindelof).

Proof. Let *F* be a β^* -clopen subset of an almost β^* -compact space *X* and $\{G_i : i \in I\}$ be a β^* -open cover of *F*. Then F^c is β^* -open and $X \subseteq (\bigcup\{G_i : i \in I\}) \bigcup F^c$. Since *X* is almost β^* -compact, then there exists a finite subset I_0 of *I* such that $X = (\bigcup\{\beta^* - Cl(G_i) : i \in I_0\}) \bigcup F^c$. Thus it

follows that $F \subseteq U\{\beta^* - Cl(G_i) : i \in I_0\}$. Hence F is almost β^* -compact.

The proof is similar in case of almost β^* -Lindelof.

Theorem 6.8. If A is an almost β^* -compact (almost β^* -Lindelof) subset of (X, τ) and B is a β^* -open subset of X, then AI B is almost β^* -compact (almost β^* -Lindelof).

Proof. Let $\Lambda = \{G_i : i \in I\}$ be a β^* -open cover of AI B. Then $A \subseteq (\bigcup\{G_i : i \in I\}) \cup B^c$. Since A is almost β^* -compact, then there exists a finite subset I_0 of I such that $A \subseteq (\bigcup\{\beta^* - Cl(G_i) : i \in I_0\}) \cup B^c$. Therefore AI $B \subseteq \bigcup\{\beta^* - Cl(G_i) : i \in I_0\}$. Thus AI B is almost β^* -compact.

The proof is similar in case of almost β^* -Lindelof.

Theorem 6.9. Let a map $f:(X,\tau) \to (Y,\sigma)$ be β^* -irresolute. Suppose that A is almost β^* -compact (almost β^* -Lindelof) subset of X. Then f(A) is almost β^* -compact (almost β^* -Lindelof).

Proof. Suppose that $\{G_i : i \in I\}$ is β^* -open cover of f(A). Then $f(A) \subseteq \mathrm{U}\{G_i : i \in I\}.$ Now, $A \subseteq U\{f^{-1}(G_i) : i \in I\}$. Since f is β^* -irresolute, then $\{f^{-1}(G_i): i \in I\}$ is a β^* -open cover of A. By hypothesis, A is almost β^* -compact, then there exists finite subset I_0 of Ι such that $A \subseteq \mathrm{U} \Big\{ \beta^* - Cl \Big[f^{-1}(G_i) \Big] : i \in I_0 \Big\}. \qquad \text{Since}$ f is then $\beta^* - Cl(f^{-1}(G_i)) \subseteq$ β * – irresolute, $f^{-1}[\beta^* - Cl(G_i)]$, for all $i \in I_0$. Hence it follows that $f(A) \subseteq \bigcup_{i \in I_0} f\left\lceil f^{-1}(\beta^* - Cl(G_i)) \right\rceil \subseteq \bigcup_{i \in I_0} \beta^* - Cl(G_i),$ which implies that $f(A) \subseteq \bigcup_{i \in I_0} \beta^* - Cl(G_i)$. Thus f(A) is almost β^* -compact.

The proof is similar in case of almost β^* -Lindelof.

Theorem 6.10. Let $f:(X, \tau) \to (Y, \sigma)$ be a β^* -open bijective map and (Y, σ) is almost β^* -compact. Then (X, τ) is almost compact.

Proof. Let $\{G_i : i \in I\}$ be an open cover of X. Then $f(X) = f(\bigcup_{i \in I} G_i)$. Therefore $Y = \bigcup_{i \in I} f(G_i)$. Now,

Y is almost β^* -compact, then there exists a finite subset I_0 of *I* such that $Y = \bigcup_{i \in I_0} \beta^* - Cl[f(G_i)]$. Since *f* is β^* -open bijective map, then *f* is β^* -closed map. Therefore, we have $\beta^* - Cl[f(G_i)] \subseteq f[Cl(G_i)]$, for all $i \in I_0$. Thus $Y \subseteq \bigcup_{i \in I_0} f[Cl(G_i)] \subseteq f[\bigcup_{i \in I_0} Cl(G_i)]$, which implies that $X = f^{-1}(Y) \subseteq \bigcup_{i \in I_0} Cl(G_i)$. Thus $X = \bigcup_{i \in I_0} Cl(G_i)$. Hence *X* is almost compact.

Theorem 6.11. If every collection of β^* -closed subsets of (X, τ) , satisfying the finite (countable) intersection property, has, itself, a non-empty intersection, then X is almost β^* -compact (almost β^* -Lindelof).

Proof. Let $\{G_i : i \in I\}$ be a β^* -open cover of X. Suppose $\{G_i : i \in I\}$ has no finite sub-collection such that the β^* -closure of whose members cover X. Then $X - \bigcup_{i=1}^{i=n} I\alpha - Cl(G_i) \neq \phi$, for any $n \in N$. Therefore $X - \bigcup_{i=1}^{i=n} G_i \neq \phi$. Now, $\prod_{i=1}^{n} G_i^c \neq \phi$ implies $\{G_i^c : i \in I\}$ is a collection of β^* -closed subsets of X which has the finite intersection property. Thus $\prod_{i\in I} G_i^c \neq \phi$ implies $X \neq \bigcup_{i\in I} G_i$. But this is a contradiction. Hence X is almost β^* -compact.

A similar proof is given in a case of almost β^* -Lindelof.

7 Mildly β*–Compact Spaces

Definition 7.1. A topological space (X, τ) is called mildly β^* -compact (mildly β^* -Lindelof) provided that every β^* -clopen cover of X has a finite (countable) sub cover.

Theorem 7.2. Every mildly β^* -compact space is mildly β^* -Lindelof.

Proof. It is straight forward.

Theorem 7.3. Every almost β^* -compact (almost β^* -Lindelof) space (X, τ) is mildly β^* -compact (mildly β^* -Lindelof).

Proof. Let $\Lambda = \{H_i : i \in I\}$ be a β^* -clopen cover of (X, τ) . Since (X, τ) is almost β^* -compact, then there exists a finite subset I_0 of I such that

Raia Mohammad Latif

 $\begin{aligned} X = \bigcup_{i \in I_0} \beta^* - Cl(H_i). \text{ Now, } \beta^* - Cl(H_i) = H_i. \text{ Thus} \\ (X, \tau) \text{ is mildly } \beta^* - \text{compact.} \end{aligned}$

A similar proof is given when (X, τ) is almost β^* -Lindelof.

Corollary 7.4. Every β^* -compact (β^* -Lindelof) space is mildly β^* -compact (mildly β^* -Lindelof).

Theorem 7.5. If F is a β^* -clopen subset of a mildly β^* -compact (mildly β^* -Lindelof) space X, then F is mildly β^* -compact (mildly β^* -Lindelof)

Proof. Let *F* be a β^* -clopen subset of *X* and $\{G_i : i \in I\}$ be a β^* -clopen cover of *F*. Then F^c is a β^* -clopen and $F \subseteq \bigcup_{i \in I} G_i$. Therefore $X = (\bigcup_{i \in I} G_i) \cup F^c$. Since *X* is mildly β^* -compact, then there exists a finite subset I_0 of *I* such that $X = (\bigcup_{i \in I_0} G_i) \cup F^c$. So $F \subseteq (\bigcup_{i \in I_0} G_i)$. Hence *F* is mildly β^* -compact.

The proof is similar in a case of mildly β^* -Lindelof. **Theorem 7.6.** If *A* is a mildly β^* -compact (mildly β^* -Lindelof) subset of *X* and *B* is a β^* -clopen subset of *X*, then *A***I** *B* is mildly β^* -compact (mildly β^* -Lindelof).

Proof. Let $\Lambda = \{G_i : i \in I\}$ be a β^* -clopen cover of AI B. Then $A \subseteq (\bigcup_{i \in I} G_i) \cup B^c$. Since A is mildly β^* -compact, then there exists a finite subset I_0 of I such that $A \subseteq (\bigcup_{i \in I_0} G_i) \cup B^c$. Therefore AI $B \subseteq \bigcup_{i \in I_0} G_i$. Thus AI B is mildly β^* -compact. The proof is similar in case of mildly β^* -Lindelof.

Theorem 7.7. If $f:(X,\tau) \rightarrow (Y,\sigma)$ is a β^* -open

bijective map and (Y, σ) is mildly β^* -compact, then (X, τ) is mildly compact.

Proof. Let $\{G_i : i \in I\}$ be a clopen cover for X. Then $f(X) = f(\bigcup_{i \in I} G_i)$. Hence $Y = \bigcup_{i \in I} f(G_i)$. Since f is β^* -open bijective map, then f is β^* -closed. Therefore $\{f(G_i): i \in I\}$ is a β^* -open cover of X. Since Y is mildly β^* -compact, then there exists a finite subset I_0 of I such that $Y = \bigcup_{i \in I_0} f(G_i)$. Therefore $X = \bigcup_{i \in I_0} G_i$. Thus X is mildly compact.

Proposion 7.8. A subset A of (X, τ) is mildly compact (mildly Lindelof) if and only if (X, τ_A) is mildly compact (mildly Lindelof).

8 β*-Connected Spaces

Definition 8.1. A topological space (X, τ) is said to be connected if X cannot be written as a disjoint union of two non empty open sets. A subset of (X, τ) is connected if it is connected as a subspace.

Definition 8.2. A topological space (X, τ) is said to be β^* -connected if X cannot be written as a disjoint union of two non empty β^* -open sets. A subset of (X, τ) is β^* -connected if it is β^* -connected as a subspace.

Theorem 8.3. Every β^* -connected space (X, τ) is connected.

Proof. Let A and B be two non empty disjoint proper open sets in X. Since every open set is β^* -open set. Therefore A and B are non empty disjoint proper β^* -open sets in X and X is β^* -connected space. Hence $X \neq A \cup B$. Therefore X is β^* -connected.

Theorem 8.4. Let (X, τ) be a topological space. Then the following statements are equivalent

(*i*) (X, τ) is β^* -connected.

(*ii*) The only subsets of (X, τ) which are both β^* -open and β^* -closed are the empty set ϕ and X (*iii*) Each β^* -continuous map of (X, τ) into a discrete space (Y, σ) with at least two points is a constant map.

Proof. $(i) \Rightarrow (ii)$: Let G be a non empty proper β^* -open and β^* -closed subset of (X, τ) . Then X - G is also both β^* -open and β^* -closed. Then X = GU(X - G) is a disjoint union of two non empty β^* -open sets, which contradicts the fact that (X, τ) is β^* -connected. Hence $G = \phi$ or G = X.

 $(ii) \Rightarrow (i)$: Suppose that $X = A \cup B$ where A and B are disjoint non empty β^* -open subsets of (X, τ) . Since A = X - B, then A is both β^* -open and

 β^* -connected. By assumption $A = \phi$ or A = X, which is a contradiction. Hence (X, τ) is β^* -connected. $(ii) \Rightarrow (iii):$ Let $f:(X,\tau) \to (Y,\sigma)$ be а β^* -continuous map, where (Y, σ) is discrete space with at least two points. Then $f^{-1}(y)$ is β^* -closed and β^* -open for each $y \in Y$. Thus (X, τ) is covered β^* -closed and β^* -open bv covering $\{f^{-1}(y): y \in Y\}$. By assumption, $f^{-1}(y) = \phi$ or $f^{-1}(y) = X$ for each $y \in Y$. If $f^{-1}(y) = \phi$ for each $y \in Y$, then f fails to be a map. Therefore their exists at least one point say $y^* \in Y$ such that $f^{-1}(\{y^*\}) \neq \phi$. Since $f^{-1}(\{y^*\})$ is also both β^* -open and $\beta * - closed$ Therefore by hypothesis set. $f^{-1}(\{y^*\}) = X$. This shows that f is a constant map.

(*iii*) \Rightarrow (*ii*): Let G be both β^* -open and β^* -closed set in (X, τ) . Suppose $G \neq \phi$. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a β^* -continuous map defined by $f(G) = \{a\}$ and $f(X-G) = \{b\}$ where $a \neq b$ and $a, b \in Y$. By assumption, f is constant so G = X.

Theorem 8.5. Suppose $f:(X, \tau) \rightarrow (Y, \sigma)$ is a β^* -continuous surjection and (X, τ) is β^* -connected. Then (Y, σ) is connected.

Proof. Suppose (Y, σ) is not connected. Let $Y = A \cup B$, where A and B are disjoint non empty open subsets of (Y, σ) . Since f is β^* -continuous, $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non empty β^* -open subsets of X. This disproves the fact that (X, τ) is β^* -connected. Hence (Y, σ) is connected.

Theorem 8.6. Suppose $f:(X,\tau) \to (Y,\sigma)$ is a β^* -irresolute surjection and (X,τ) is β^* -connected. Then Y is β^* -connected.

Proof. Suppose that Y is not β^* -connected. Let $Y = A \cup B$, where A and B are disjoint non empty β^* -open sets in Y. Since f is β^* -irresolute map and onto, $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and

 $f^{-1}(B)$ are disjoint non empty β^* -open sets in (X, τ) . This contradicts the fact that (X, τ) is β^* -connected. Hence (Y, σ) is β^* -connected.

Theorem 8.7. If every β^* -closed set in X is closed in X and X is connected, then X is β^* -connected.

Proof. Suppose that X is connected. Then X cannot be expressed as a disjoint union of two nonempty proper open subset of X. Let X be not β^* -connected space. Let A and B be any two non empty β^* -open subsets of X such that X = AUB, where $AI = \phi$. Since every β^* -closed set in X is closed in X. Therefore every β^* -open set in X is open in X. Hence A and B are open subsets of X, which contradicts that X is connected. Therefore X is β^* -connected.

Theorem 8.8. Every β^* -connected space (X, τ) is mildly β^* -compact.

Proof. Since (X, τ) is β^* -connected then the only β^* -clopen subsets of (X, τ) are X and ϕ . Therefore (X, τ) is mildly β^* -compact.

Theorem 8.9. If two β^* -open sets *C* and *D* form a separation of *X* and if *Y* is β^* -connected subspace of *X*, then *Y* lies entirely within *C* or *D*.

Proof. By hypothesis *C* and *D* are both β^* -open sets in *X*. The sets *C*I *Y* and *D*I *Y* are β^* -open in *Y*, these two sets are disjoint and their union is *Y*. If they were both non empty, they would constitute a separation of *Y*. Therefore, one of them is empty. Hence *Y* must lie entirely in *C* or *D*.

Theorem 8.10. Let A be a β^* -connected subspace of X. If $A \subseteq B \subseteq \beta^* - Cl(A)$, then B is also β^* -connected.

 β^* – connected. **Proof**. Α be Let Let $A \subseteq B \subseteq \beta^* - Cl(A)$. Suppose that $B = C \cup D$ is a separation of B by β^* -open sets. Thus by previous theorem A must lie entirely in C or D. Suppose that $A \subseteq C$, then it implies that $\beta^* - Cl(A) \subseteq \beta^* - Cl(C)$. Since $\beta^* - Cl(C)$ and D are disjoint, B cannot intersect D. This disproves the fact that D is non empty subset of В. So $D = \phi$ which implies B is β^* -connected.

9 Conclusion

We have used β^* -open sets to introduce the new concepts of notions in topological spaces namely β^* -compact space, countably β^* -compact space, β^* -Lindelof space, almost β^* -compact space, mildly β^* -compact space and β^* -connected space and have investigated several properties and characterizations of these new concepts.

ACKNOWLEDGEMENT

The author is highly and gratefully indebted to the Prince Mohammad Bin Fahd University, Saudi Arabia, for providing research facilities during the preparation of this research paper.

References:

- [1] Ghufran A. Abbas and Taha H. Jasim, On Supra α -Compactness in Supra Topological Spaces, Tikrit Journal of Pure Science, Vol. 24(2) (2019), 91-97.
- [2] Baravan A. Asaad and Alias B. Khalaf, On P_s -Compact Space, International Journal Scientific & Engineering Research, Volume 7, Issue 8, August 2016, 809 815.
- [3] S. Balasubramanian, C. Sandhya and P.A.S. Vyjayanthi, On ν -Compact spaces, Scientia Magna, 5(1) (2009), 78-82.
- [4] Miguel Caldas, Saeid Jafari, and Raja M. Latif, b-Open Sets and A New Class of Functions, Pro Mathematica, Peru, Vol. 23, No. 45 – 46, pp. 155 – 174, (2009).
- [5] R. Devi, S. Sampathkumar and M. Caldas, On supra α -open sets and S-continuous maps, General Mathematics, 16 (2), (2008), 77 84.
- [6] W. Dunham, A New Closure Operator for non T1 topology, Kyuungpook Math. J., 22(1982), pp. 55 -60.
- [7] A. A. El-Atik, H.M. Abu Donia and A.S. Salama, On b – connectedness and b – disconnectedness, Journal of the Egyptian Mathematical Society, 21(2013), pp. 63 – 67.

- [8] H. Z. Hdeib, ω-closed mappings, Rev. Colomb. Mat., 16 (1-2) (1982), 65–78.
- [9] K. Krishnaveni and M. Vigneshwaran, Some Stronger forms of supra $bT\mu$ continuous function, Int. J. Mat. Stat. Inv., 1(2), (2013), 84 87.
- [10] K. Krishnaveni, M. Vigneshwaran, bTμcompactness and bTμ - connectedness in supra topological spaces, European Journal of Pure and Applied Mathematics, Vol. 10, No. 2, 2017, 323 – 334 ISSN 1307-5543 – www.ejpam.com.
- [11] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36 – 41.
- [12] A. S. Mashhour, M. E. Abd El-Monsefand S. N. El-Deed, On Precontinuous and weak precontinuous Mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), pp. 47 – 53.
- [13] A. S. Mashhour, A. A. Allam, F. S. Mohamoud and F. H. Khedr, On supra topological spaces, Indian J. Pure and Appl. Math., No.4, 14(1983), 502 – 510.
- [14] S. Pious Missier and P. Anbarasi Rodrigo, Some Notions of Nearly Open Sets in Topological Spaces, Intenational Journal of Mathematical Archive, 4(12) (2013) 12 – 18.
- [15] Ali M. Mubarki, Massed M. Al-Rshudi and Mohammad A. Al-Juhani, β^* -open sets and β^* -continuity in topological spaces, Journal of Taibah University for Science 8(2014), 142 – 148.
- [16] Jamal M. Mustafa, supra b-compact and supra b-Lindelof spaces, Journal of Mathematics and Applications, No36, (2013), 79 – 83.
- [17] O. Njastad, Some Classes of Nearly Open sets, Pacific J. Math., 15(3)(1965), pp. 961 – 970.
- [18] T. Noiri and O. R. Sayed, On Ω closed sets and Ω s closed sets in topological spaces, Acta Math, 4(2005), 307 318.
- [19] Hakeem A. Othman and Md. Hanif Page, On an Infra α Open Sets, Global Journal of Mathematical Analysis, 4(3) (2016) 12 16.
- [20] P. G. Patil, w compactness and w connectedness in topological spaces, Thai. J. Mat., (12), (2014), 499 - 507.
- [21] A. Robert and S. Pious Missier, On Semi*-Connected and Semi*-Compact Spaces,

International Journal of Modern Engineering Research, Vol. 2, Issue 4, July – Aug. 2012, pp. 2852 – 2856.

- [22] A. Robert and S. Pious Missier, A New Class of Nearly Open Sets, Intenational Journal of Mathematical Archive, 3(7) (2012) 2575 – 2582.
- [23] O. R. Sayed, Takashi Noiri, On supra b open set and supra b – continuity on topological spaces, European Journal of pure and applied Mathematics, 3(2) (2010), 295 – 302.
- [24] O. R. Sayed and T. Noiri, Supra b-irresoluteness and supra b-compactness on topological space, Kyungpook Math. J., 53(2013), 341 – 348.
- [25] T. Selvi and A. Punitha Dharani, Some new class of nearly closed and open sets, Asian Journal of Current Engineering and Maths, 1:5 SepOct (2012) 305 – 307.
- [26] L. A. Steen and J. A. Seebach Jr, Counterexamples in Topology, Holt, Rinenhart and Winston, New York 1970.
- [27] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78(2) (1968), 103 – 118.
- [28] L. Vidyarani and M. Vigneshwaran, On Supra Nclosed and sN-closed sets in Supra Topological Spaces, International Journal of Mathematical Achieve, Vol-4, Issue-2, (2013), 255 – 259.
- [29] L. Vidyarani and M. Vigneshwaran, Some forms of N-closed maps in supra Topological spaces, IOSR Journal of Mathematics, Vol-6, Issue-4, (2013), 13 – 17.
- [30] L. Vidyarani and M. Vigneshwaran, Supra Ncompact and Supra N-connected in Supra Topological Spaces, Global Journal of Pure and Applied Mathematics, Volume 11, Number 4 (2015). Pp. 2265 – 2277.
- [31] Albert Wilansky, Topology for Analysis, Devore Pblications, Inc, Mineola New York. (1980).
- [32] Stephen Willard, General Topology, Reading, Mass.: Addison Wesley Pub. Co. (1970).
- [33] Stephen Willard and Raja M. Latif, Semi-Open Sets and Regularly Closed Sets in Compact Metric Spaces, Mathematica Japonica, Vol. 46, No.1, (1997), 157 – 161.