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1 Introduction  

The concept of supra topology was introduced by A. S. 
Mashhour et al [13] in the year 1983. They studied about 
s continuous  functions and s continuous*   functions. 
In 2008, R. Devi et al [5] introduced the concept of 
supra open  sets and supra continuous  maps. 

Jamal. M. Mustafa [16] studied about supra b compact  

and supra b Lindelof  spaces. Vidyarani et al in [30] 
introduced the concept of supra N compact ,  countably 

supra N compact ,  supra N Lindelof  and supra 

N connectedness  and investigated about their 
relationships using the concept of continuity. In 2013, 
Missier and Rodrigo [14] introduced new class of set in 
general topology called an open   supra open  

set. In 2014 Mubarki, Al-Rshudi, and Al-Juhani [15]  
introduced and studied the notion of set in general 
topology called open*  sets and investigated its 
fundamental properties and studied the relationship 
between open*  set and other topological sets 
including continuity*   in topological spaces. The 
objective of this paper is to introduce the new 
concepts called compact*   space, countably 

compact*  space, Lindelof*   space,  almost

compact space* ,   mildly compact*   space and 
connected*   space in general topology and 

investigate several properties and characterizations 
of these new concepts in topological spaces. 

Throughout this paper  X ,  or simply by X  we 

denote topological space on which no separation axioms 
are assumed unless explicitly stated and 

   f : X , Y ,   means a mapping f  from a 

topological space X  to a topological space Y. If U  is a 

set and x  is a point in X , then  N x ,   Int U ,

 Cl U  and cU  denote respectively, the neighbourhood 

system of x, the interior of U , the closure of  U  and 

complement of U .  

 

2 Preliminaries 

Definition 2.1.  A subset A  of a topological space X  is 

called semi open  set if   .A Cl Int A     

Definition 2.2.  A subset A of a topological space X  is 

called open   set if    .A Int Cl Int A     
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Definition 2.3.  A subset A of a topological space X  is 

called  open   set if    .A Cl Int Cl A     

Definition 2.4.  A subset A of a topological space X  is 

called  pre open  set if   .A Int Cl A     

Definition 2.5.  A subset A  of a topological space X  is 

said to be  b open  set if     .A Cl Int A Int Cl A       U  

Definition 2.6.  Let  ,X   be a topological space. 

Then a point x X  is called the cluster  point of 

A X if  A Int Cl U    I  for every open set U of 

X containing .x The set of all cluster points of A is 
called the cluster   points of ,A  denoted by  .Cl A  

A subset A X  is called closed   if  .A Cl A  

Definition 2.7.  Let  ,X   be a topological space and 

.A X  Then A  is called open   set if its 

compliment X A  is  closed   in .X  The collection 
of all open   sets in a topological space  ,X   forms 

a topology   on ,X  weaker than   and the class of all 

regular open sets in   forms an open basis for .  

Definition 2.8.  A subset A of a topological space X  is 

called  e* open  set if    .A Cl Int Cl A     

Definition 2.9.  Let  ,X   be a topological space. 

Then a subset  A  of X  is said to be * open   if 

     .A Cl Int Cl A Int Cl A     U  The family of all 

* open   subsets of a topological space   ,X   will 

be as always denoted by  * .O X  

Definition 2.10.  A subset A of a topological space 

 ,X   is said to be a * closed   set if 

     .Int Cl Int A Cl Int A A       I   

The family of all * closed   subsets of a topological 

space   ,X   will be as denoted by  * .C X  

Remark 2.11.  The following diagram holds for each a 

subset  A  of .X  

open set open set preopen set b open

set open set * open set e* open set


 
    

     
 

Theorem 2.12.  Let   ,X   be a topological space. 

Then the following assertions hold: 

 1  The arbitrary union of * open  sets is * open.   

 2  The arbitrary intersections of * closed is 

* closed.   

Proof .  1  Let  :iA i I  be a family of * open  sets. 

Then     i i iA Cl Int Cl A Int Cl A     U  and 

therefore immediately it follows that 

     i i ii I i I
A Cl Int Cl A Int Cl A 

      UU U

     ,i ii I i I
Cl Int Cl A Int Cl A 

   
  UU U  for all .i I  

Thus ii I
A

U  is  * open.  

 2  It follows from  1 .  

Remark 2.13.  The next example shows that the 

intersection of any two * open  sets is not * open.   

Example 2.14.  Let  1,2,3X   with topology 

      , 1 , 2 , 1,2 , .X   Then  1,3A   and  2,3B   

are * open  sets. But  A B 3I  is not * open.   

Definition 2.15.  Let  ,X   be a topological space. 

Then:  

 1  The union of all * open   sets of X  contained in 

A is called the * interior   of  A  and is denoted by 

 * .Int A   

 2  The intersection of all * closed   sets of X  

containing A is called the * closure  of  A  and is 

denoted by  * Cl A .   

Theorem 2.16.  Let  ,A  B  be two subsets of a 

topological space  , .X   Then the following assertions 

are true: 
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  1  * Cl X X    and  * .Cl     

 2    * .A Cl A   

 3  If ,A B  then    * * .Cl A Cl B     

 4   *x Cl A   if and only if for each a * open   

set  U  containing ,x  .U A I  

 5  A  is * closed   set if and only if  * .A Cl A   

 6     * * * .Cl Cl A Cl A          

 7       * * * .Cl A Cl B Cl A B     U U  

 8      * * * .Cl A B Cl A Cl B     I I  

Theorem 2.17.  Let  ,A  B  be two subsets of a 

topological space  , .X   Then the following assertions 

are true: 

  1  * Int X X    and  * .Int     

 2    * .Int A A    

 3  If ,A B  then    * * .Int A Int B     

 4   *x Int A   if and only if there exists  

* open   set   W  such that  .x W A   

 5  A  is * open  set if and only if  * .A Int A   

 6     * * * .Int Int A Int A          

 7       * * * .Int A B Int A Int B     I I  

 8      * * * .Int A Int B Int A B     U U  

Definition 2.18. Let X  be a non-empty set. The 

subfamily  P X   is said to be a supra topology on 

X  if , X   and   is closed under arbitrary unions. 

The pair  X ,   is called a supra topological space. The 

elements of   are said to be supra open in  X , .  

Complement of supra open sets are called supra closed 
sets.  
Definition 2.19. A mapping    f : X , Y ,   is 

said to be a continuous*   if   1f V  is a open*   

 * closed  set in X  for each open (closed) set V in 

Y .  
Definition 2.20.  A mapping    f : X , Y ,   is 

said to be a irresolute*   if   1f V  is a open*   

 closed*   set in X  for X  each open*   

 closed*   set V in Y. 

Definition 2.21.  A mapping    f : X , Y ,   is 

said to be a open*    closed*   if   f U  is a 

open*    * closed   set in Y  for each open 

(closed) set U in X .  
Definition 2.22. A set A X  is said to be 

connected*   if A  cannot be written as the union of 

two separated*   sets. 

Definition 2.23.  Let X  be any nonempty set and 

 P X .   We say that  is a supra topology on X  if 

, X   and   is closed under arbitrary union. The pair 

 X ,  is called supra topological space. The elements 

of   are called supra open sets in  X , and 

complement of a supra open set is called a supra closed 
set. 
Definition 2.24.  A supra topological space is called 

supra compact  S compact if and only if every supra 

open cover   of X  has a finite sub cover.  
Definition 2.25.  A function    f : X , Y ,   is 

called perfectly continuous*   if the inverse image 

 1f V   of every open*   set V  of Y  is both open 

and closed in X .  
Definition 2.26.  A function    f : X , Y ,   is 

called strongly continuous*   if the inverse image 

 1f V  of every open*   V  in Y  is open in X .    

Definition 2.27.  A function    f : X , Y ,   is 

called irresolute*   if the inverse image  1f V  of 

every open*   V  in Y  is open*   in X .    
 
   
 3 * Compact Spaces   
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Definition 3.1.  A collection  iA : i I  of open*   

sets in a topological space  X ,  is called a open*   

cover of a subset B  of  X  if  iB A : i I U  holds.  

Definition 3.2.  A topological space  X ,  is called 

compact*   if every open*   cover of X  has a 
finite sub cover. 
Definition 3.3.  A subset B  of a topological space 

 X ,  is said to be compact*   relative to  X ,  if, 

for every collection  iA : i I  of open*    subsets of 

X  such that  iB A : i I U  there exists a finite subset 

0I  of I such that  0iB A : i I . U  

Definition 3.4. A subset B  of a topological space 

 X ,  is said to be compact*   if B  is 

compact*   as a subspace of X .   

Theorem 3.5.  Every compact*   space is compact. 

Proof .  Let  iA : i I  be an open cover of  X , .  

Since every open set in X  is open*   in X . So 

 iA : i I  is a open*   cover of  X , .  Since 

 X ,  is compact* ,   open*   cover  iA : i I  

of  X ,  has a finite sub cover say 

 1 2 3iA : i , , ,...,n  for X . Hence  X ,  is a 

compact space. 
Theorem 3.6.  Every closed*   subset of a

compact*   space  X ,  is  compact* ,   relative 

to X .  
Proof .   Let A  be a closed*  closed subset of a 

topological space  X , .  Then cA  is open*   in 

 X , .  Let    iA : i I  be a open*   cover of 

A  by open*   subsets of  X , .  Then 

 c* A  U  is a open*   cover of  X , .  That is 

  c
ii I

X A A .


 UU  By hypothesis  X ,  is a

compact*   space and hence *  is reducible to a 

finite sub cover of  X ,  say  
0

c
ii I

X A A


 UU  for 

some finite subset 0I  of I .  But A  and cA  are disjoint. 

Hence  0iA A : i I . U  Thus open*   cover 

 iA : i I    of A  contains a finite sub cover. Hence 

A  is compact*   relative to  X , .   

Theorem 3.7.  A continuous*   image of a 

compact*   space is compact.  

Proof .  Let    f : X , Y ,   be a continuous*   

map from a  compact*    X ,   onto a topological 

space   Y , .  Let    iA : i I  be an open cover of 

Y. Therefore     1 1
if f A : i I     is  a open*   

cover  of X , as f  is continuous* .   Since X  is 

compact* ,   the open*   cover 

    1 1
if f A : i I     of X , has a finite sub cover  

say   1 1 2 3if A : i , , ,...,n .   Therefore 

 1

1

n

ii
X f A ,


U  which implies  

1

n

ii
Y f X A .


 U  

That is  1 2 3iA : i , , ,...,n  is a finite sub cover of  

 iA : i I .    Hence  Y ,  is  compact. 

Theorem 3.8.  Suppose that a function 

   f : X , Y ,    is  irresolute*   and a subset S  

of X  is compact*   relative to  X , ,  then the 

image  f S   is compact*   relative to  Y , .   

Proof .  Let  iA : i I    be a collection of open*   

cover of  Y , ,  such that    if S A : i I . U  Since 

f  is irresolute* .   So   iS f A : i I , 1U  where  

    if A : i I * O X , .    1  Since S  is 

compact*    relative to  X , ,  there exists a finite 

sub collection       1 1 1
1 2 nf A , f A , . . ., f A    such 

that       nS f A , f A , . . ., f A .   1 1 1
1 2U  That is 

   nf S A ,A ,...,A . 1 2U  Hence  f S  is compact*    

relative to  Y , .  

Theorem 3.9.  Suppose that a map    f : X , Y ,   

is strongly continuous*   map from a compact space 

 X ,  onto a topological space  Y , ,    then  Y ,   

is compact* .   

Proof .  Let  iA : i I  be a open*   cover of 

 Y , .  Since f  is strongly continuous* ,   

  if A : i I 1  is an open cover of  X , .  Again, 

since  X ,  is compact, the open cover 
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  if A : i I 1  of  X ,  has a finite sub cover say 

  if A : i , , ,...,n . 1 1 2 3  Therefore 

  iX f A : i , , ,...,n , 1 1 2 3U  which implies 

   if X A : i , , ,...,n , 1 2 3U  so that 

 iY A : i i , , ,...,n .  1 2 3U   That is  nA ,A ,...,A1 2  is a 

finite sub cover of  iA : i I  for  Y , .  Hence 

 Y ,  is compact* .   

Theorem 3.10.  Suppose that a map 

   f : X , Y ,   is perfectly continuous*   map 

from a compact space  X ,  onto a topological space 

 Y , .  Then  Y ,  is compact* .    

Proof .  Let  iA : i I  be a open*    cover of 

 Y , .  Since f  is perfectly continuous* ,   

  if A : i I 1  is an open cover of  X , .  Again, 

since  X ,  is compact, the open cover 

  if A : i I 1  of  X ,   has a finite sub cover say 

  if A : i , , ,...,n . 1 1 2 3  Therefore 

  iX f A : i , , ,...,n , U 1 1 2 3  which implies 

   if X A : i , , ,...,n , 1 2 3U  so that 

 iY A : i , , ,...,n . 1 2 3U  That is  nA , A , . . ., A1 2  is a 

finite sub cover of   iA : i I  for   Y , .  Hence 

 Y ,  is  compact* .   

Theorem 3.11.  Suppose that a function  

   f : X , Y ,   is irresolute*   map from a

compact*   space  X ,  onto a topological space 

 Y , .  Then  Y ,  is compact* .   

Proof .  Let    f : X , Y ,   be a irresolute*   

map from a compact*   space  X ,  onto a  

topological space  Y , .  Let  iA : i I  be a 

open*   cover of  Y , .  Then   if A : i I 1  is a 

open*   cover of  X , ,  since f  is irresolute* .    

As  X ,  is compact* ,   the open*   cover 

  if A : i I 1  of   X ,  has a finite sub cover say 

  if A : i , , ,...,n . 1 1 2 3  Therefore 

  iX f A : i , , ,...,n , 1 1 2 3U  which implies 

   if X A : i , , ,...,n , 1 2 3U  so that 

 iY A : i , , ,...,n . 1 2 3U  That is   nA , A ,. . ., A1 2  is a 

finite sub cover of   iA : i I  for  Y , .  Hence  Y ,   

is compact* .   

Theorem 3.12.  If  X ,  is compact and every 

closed*   set in X  is also closed in X , then   X ,  

is compact* .   

Proof .  Let  iA : i I  be a open*   cover of  .X  

Since every closed*   set in X  is also  closed in .X  

Thus  iX A : i I   is a closed cover of X  and hence 

 iA : i I  is an open cover of .X  Since  X ,  is 

compact. So there exists a finite sub cover 

 iA : i , , ,...,n1 2 3  of  iA : i I  such that 

 iX A : i , , ,...,n . 1 2 3U  Hence  X ,  is 

compact* .    

Theorem 3.13.  A topological space  X ,  is 

compact*   if and only if every family of  

closed*   sets of  X ,  having finite intersection 

property has a non empty intersection.  
Proof .  Suppose  X ,  is compact* .   Let 

 iA : i I  be a family of  closed*   sets with finite 

intersection property. Suppose i
i I

A ,


I  then 

  iX A : i I X .  I  This implies 

  iX A : i I X .  U  Thus the cover 

  iX A : i I   is a open*   cover of  X , .  Then 

as  X ,  is compact* ,   the open*    cover  

  iX A : i I   has a finite sub cover say 

  iX A : i , , ,...,n . 1 2 3  This implies that 

  iX X A : i , , ,...,n  1 2 3U  which implies 

 iX X A : i , , ,...,n ,  1 2 3I  which implies 

 iX X X X A : i , , ,...,n ,       1 2 3I  which implies 

 iA : i , , ,...,n .  1 2 3I  This disproves the 

assumption. Hence   iA : i I . I  

 Conversely, suppose  X ,  is not compact* .   Then 

there exits a open*   cover of  X ,  say  iG : i I  

having no finite sub cover. This implies that for any 
finite sub family  iG : i , , ,...,n1 2 3  of   iG : i I ,  we 
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have  : , , ,..., ,iG i n X 1 2 3U  which implies 

  iX G : i , , ,...,n X X ,   1 2 3U   therefore

 iX G : i , , ,...,n .  1 2 3I  Then the family 

 iX G : i I   of  closed*   sets has a finite 

intersection property. Also by assumption 

 iX G : i I   I  which implies 

  iX G : i I ,  U  so that  iG : i I X . U  This 

implies  iG : i I  is not a cover of  X , .  This 

disproves the fact that  iG : i I  is a cover for  X , .  

Therefore a open*    cover  iG : i I  of  X ,   has 

a finite sub cover  iG : i , , ,...,n .1 2 3  Hence  X ,   is  

compact* .   

Theorem 3.14.  Let A  be a compact*   set relative 

to a topological space X  and B   be a  closed*   

subset of X .  Then A BI  is compact*   relative to 
X .  
Proof .  Let A  be compact*   relative to X .  Let 

 iA : i I  be a cover of A BI  by open*   sets in 

X .  Then    C
iA : i I B U  is a cover of A  by 

open*   sets in X , but A  is compact*   relative 
to X , so there exists a finite subset 

 nI i , i , i , . . . ,i I 0 1 2 3   such that 

  k

C
iA A : k , , , . . . ,n B . 1 2 3U U  Then it follows 

that  
ki

A B A B : k , , , . . . ,n  1 2 3I U I

 
ki

A : k , , ,...,n .1 2 3U   Hence A BI  is compact* .   

Theorem 3.15.  Suppose that a function 

   f : X , Y ,   is  irresolute*   and a subset B  

of X  is compact*   relative to X .  Then  f B  is 

compact*   relative to Y .  

Proof .  Let  iA : i I  be a cover of  f B  by 

open*   subsets of Y .  Since f  is irresolute* .   

Then   if A : i I 1  is a cover of  B  by open*   

subsets of  X .  Since B  is compact*   relative to X , 

  if A : i I 1  has a finite sub cover say 

      nf A , f A , . .., f A  1 1 1
1 2  for B.   Then it implies 

that  iA : i , , ,...,n1 2 3  is a finite sub cover of 

 iA : i I  for  f B . So  f B  is compact*   

relative to Y .  
3 16Definition . .  Let  X ,   be a topological space and 

let E  be a subset of X .  Let 

  i

E
A E : A * O X , .

     I  Then  i

E
E,

  is a 

supra topological space. 
Theorem 3.17.  Let  X ,   be a topological space and  

let E  be a subset of X .  Then  i

E
E,

  is supra compact 

if and only if for any open*   cover   of E  has a 

finite sub cover of E. 
Proof .  Suppose E  is supra compact. Let 

 * O X ,     such that E . U  Let 

 E A E : A .  I  Then EE  U  and 
i

E E
.

   By 

hypothesis there exists a finite subset 

 *

i EE
A E : i , , ,...,n    1 2 3I  such that 

*

E
E . U  

Then  *

iA : i , , ,...,n    1 2 3  and  E * .U   

Conversely, let   i

i E
A E : i I

   I  such that 

E . U  Then    i* A : i A  is a open*   

covering of E. By hypothesis there exists 

 1 2 3i** A : i , , ,...,n    a finite subset of *  such 

that E **. U  Then  1 2 3#
iA E : i , , ,...,n  I  is a 

finite subset of   such that #E . U  This proves that 

 i

E
E,

  is supra compact.  

 

Countably Compact Spaces* 4  

In this section, we present the concept of countably 
compactness*   and its properties. 

Definition 4.1.  A topological space   X ,  is said to be 

countably compact*   if every countable open*    
cover of  X  has a finite sub cover. 
Theorem 4.2.  If  X ,  is a countably compact*   

space, then  X ,  is countably compact.    

Proof .  Let  X ,  be a countably compact*   space. 

Let  iA : i I   be a countable open cover of  X , .  

Since  * O X , .     So  iA : i I  is a countable 

open*   cover of   X , .  Since  X ,  is countably 

compact* ,   therefore countable open*   cover 
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 iA : i I  of  X ,  has a finite sub cover say 

 iA : i , , , . . . ,n1 2 3  for X . Hence  X ,   is a 

countably compact space. 
Theorem 4.3.  If  X ,  is countably compact and 

every closed*    subset of  X   is closed in X , then 

 X ,   is countably compact* .   

Proof .  Let  X ,  be a countably compact space. Let 

 iA : i I  be a countable open*   cover of  X , .   

Since every  closed*  subset of X  is closed in X . 
Thus every open*   set in X  is open in X . 

Therefore  iA : i I  is a countable open cover of 

 X , .   Since  X ,    is countably compact, so 

countable open cover  iA : i I  of   X ,   has a 

finite sub cover say  iA : i , , ,...,n1 2 3  for X . Hence 

 X ,  is a countably compact*   space. 

Theorem 4.4.  Every compact*   space is countably 
compact* .   

Proof .  Let  X ,   be a compact*   space. Let 

 iA : i I  be a countable open*   cover of  X , .  

Since  X ,    is compact* ,   so open*   cover 

 iA : i I  of  X ,  has a finite sub cover say 

 iA : i , , ,...,n1 2 3  for  X , .  Hence  X ,   is 

countably compact*   space. 

Theorem 4.5.  Let    f : X , Y ,   be a

continuous*   onjective mapping. If X  is countably 

compact*   space, then  Y ,  is countably compact.  

Proof .  Let    f : X , Y ,   be a continuous*   

map from a countably compact*   space  X ,  onto 

a  topological space  Y , .  Let  iA : i I  be a 

countable open cover of Y. Then    if A : i I1  is a 

countable open*   cover of X , as f  is 

continuous* .   Since X  is countably compact* ,   

the countable open*   cover   if A : i I 1  of  X   

has a finite sub cover say   if A : i , , ,...,n . 1 1 2 3  

Therefore   iX f A : i , , ,...,n , 1 1 2 3U  which 

implies    iY f X A : i , , ,...,n .  1 2 3U  That is 

 iA : i , , ,...,n1 2 3  is a finite sub cover of  iA : i I  

for Y. Hence Y  is countably  compact.  
Theorem 4.6.  Suppose that a map    f : X , Y ,   

is perfectly continuous*   map from a countably 

compact space  X ,  onto a topological space  Y , .  

Then  Y ,  is countably compact* .   

Proof .  Let  iA : i I  be a countable open*   cover 

of  Y , .  Since f  is perfectly continuous* ,   

  if A : i I 1  is a countable open cover of  Y , .  

Again, since  X ,   is countably compact* ,   the 

countable open cover    if A : i I 1  of   X ,    has a 

finite sub cover say   if A : i , , ,...,n . 1 1 2 3  Therefore 

  iX f A : i , , ,...,n , 1 1 2 3U  which implies 

   if X A : i , , ,...,n , 1 2 3U  so that 

 iY A : i , , ,...,n . 1 2 3U  That is  nA ,A , . . ., A1 2  is a 

finite sub cover of   iA : i I  for  Y , .  Hence  Y ,    

is countably compact* .    

Theorem 4.7.  Suppose that a map    f : X , Y ,   

is strongly continuous*   map from a countably 

compact space  X ,  onto a topological space  Y , .  

Then  Y ,    is countably  compact* .   

Proof .  Let  iA : i I  be a countable open*   cover 

of  Y , .  Since f  is strongly continuous* ,   

  if A : i I 1  is a countable open cover  of  X , .  

Again, since  X ,  is countably compact, the countable 

supra open cover    if A : i I 1  of   X ,   has a 

finite sub cover say   if A : i , , ,...,n . 1 1 2 3  Therefore 

  iX f A : i , , ,...,n , 1 1 2 3U  which implies 

   if X A : i , , ,...,n , 1 2 3U  so that 

 iY A : i , , ,...,n . 1 2 3U  That is  nA ,A ,...,A1 2  is a 

finite sub cover of  iA : i I  for  Y ,  Hence  Y ,   

is countably compact* .   

Theorem 4.8. The image of a countably compact*   

space under a irresolute*   map is countably  
compact* .   
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Proof .  Suppose that a map     f : X , Y ,   is 

irresolute*   from a countably compact*   space 

 X ,  onto a  topological space  Y , .  Let 

 iA : i I  be a countable open*   cover of  

 Y , .  Then   if A : i I 1  is a countable 

open*   cover of  X , ,  since f  is 

irresolute* .   As  X ,  is countably compact* ,   

the countable open*   cover    if A : i I1  of 

 X ,  has a finite sub cover say 

  if A : i , , ,...,n . 1 1 2 3  Then it follows that

  iX f A : i , , ,...,n , 1 1 2 3U  which implies 

   if X A : i , , ,...,n , U 1 2 3  so that 

 iY A : i , , ,...,n . 1 2 3U  That is  nA ,A , . . ., A1 2  is a 

finite sub cover of   iA : i I  for  Y , .  Hence 

 Y ,  is countably compact* .   

Definition 4.9.  Let  X ,  be a topological space and 

x X .  A point x  is said to be limit*   point of 

A X  provided that every neighbourhood*   of x  

contains at least one point of A  different from x.  
Theorem 4.10.  Every infinite subset of a compact*   

space has a limit*  point. 

Proof .  Let A  be an infinite subset of a compact*   

space  X , .  Assume A  does not have a limit*   

point. Then for each x X ,  there exists a open*   

set xG  containing at most one point of A.  Now, the 

collection  xG : x X    forms a open*   cover of 

X .  Since X  is compact* ,   therefore there exist 

1 2 nx ,x ,...,x X  such that 
1 i

i n

xi
X G .




U  Therefore X  

has at most n  points of A.  This implies that A  is finite. 
But this contradicts that A  is infinite. Thus  A  has a 

* limit   point. 
 

* Lindelof Spaces 5  

In this section, we concentrate on the concept of 
Lindelof*   space and its properties. 

Definition 5.1.  A topological space  X ,   is said to be 

Lindelof*   space if every open*   cover of X  
has a countable sub cover. 

Theorem 5.2.  Every Lindelof*   space  X ,   is 

Lindeloff space.  
Proof .  Let  X ,  be a Lindelof*    space. Let 

 iA : i I  be an open cover of  X , .  Since 

 * O X , .     Therefore  iA : i I  is a open*   

cover of  X , .  Since  X ,  is Lindelof*   space. 

So there exists a countable subset I0  of I  such that 

 iA : i I0  is a open*   sub cover of  X , .  

Hence  X ,  is a Lindelof  space. 

Theorem 5.3.  Every compact*   space is 
Lindelof* .    

Proof .  Let  X ,  be a compact*   space. Let 

 iA : i I  be a open*   cover of  X , .  Since 

 X ,  is compact*   space. Then  iA : i I  has a 

finite sub cover say  iA : i , , ,...,n .1 2 3  Since every 

finite sub cover is always countable sub cover and 
therefore  iA : i , , ,...,n .1 2 3  is countable sub cover of 

 iA : i I .  Hence  X ,  is Lindelof*  space.   

Theorem 5.4.  Every closed*   subset of a

Lindelof*   space is Lindelof* .    

Proof .  Let F be a closed*   subset of X  and  

 iG : i I  be open*   cover of F .  Then cF  is 

open*   and  iF G : i I . U  Hence 

   c
iX G : i I F . U U  Since X  is Lindelof* ,   

then   0
c

iX G : i I F U U  for some countable subset 

0I  of I .  Therefore  0iF G : i I . U  Thus F  is 

Lindelof* .   

Theorem 5.5.  Let A  be a Lindelof*    subset of X  

and B  be a closed*   subset of X .   Then A BI  is 
Lindelof* .   

Proof .  Let  iG : i I  be a open*   cover of A B.I  

Then   c
ii I

A G B .


 UU  Since A  is Lindelof* ,   

then there exists a countable subset 0I  of I  such that 

 
0

c
ii I

A G B .


 UU  Therefore 
0

ii I
A B G .


I U  Thus 

A BI  is Lindelof* .   

Theorem 5.6.  A topological space  X ,  is  

Lindelof*   if and only if every collection of  

closed*  subsets of X  satisfying the countable 
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intersection property, has, itself, a non-empty 
intersection. 
Necessity: Let  iF : i I    be a collection of  

closed*   subsets of X  which has the countable 

intersection property. Assume that ii I
F .


I  Then 

c
ii I

X F .


U  Since X  is Lindelof* ,   then there 

exists a countable subset 0I  of I  such that 

0

c
ii I

X F .


U  Therefore,  
0

ii I
F 


I  contradicts that 

  has the countable intersection property. Thus   has, 
itself, a non-empty intersection. 
Sufficiency:  Let  iG : i I  be a open*    cover of 

X .  Suppose  iG : i I  has no countable sub cover. 

Then ii J
X G ,


 U  for any countable subset J  of I .  

Now, c
ii J

G 


I  implies that  c
iG : i I  is a 

collection of closed*   subsets of X  which has the 

countable intersection property.  Therefore c
ii I

G .


I  

Thus ii I
X G


U  contradicts that  iG : i I  is a 

open*   cover of X . Hence X  is Lindelof* .   

Theorem 5.7.  A continuous*   image of a 

Lindelof*   space is a Lindeloff space.  

Proof .  Let    f : X , Y ,   be a continuous*   

map from a Lindelof*   space X  onto a topological 

space Y. Let  iA : i I  be an open cover of Y.  Then 

  if A : i I 1   is a open*   cover of X , as f  is 

continuous* .   Since X  is  Lindelof*   space, the 

open*   cover   if A : i I 1  of X  has a countable 

sub cover say   if A : i I 1
0  for some countable set 

I I .0  Therefore    iX f A : i I ,1
0U  which 

implies    if X A : i I ,  0U  then  iY A : i I .  0U   

That is  iA : i I0  is a countable sub cover of 

 iA : i I  for Y .  Hence  Y ,   is a Lindeloff space.  

Theorem 5.8.  The image of a Lindelof*   space 

under a irresolute*   map is Lindelof*  space. 

Proof .   Suppose that a map    f : X , Y ,   is a 

irresolute*   map from a Lindelof*   space  X ,  

onto a topological space  Y , .  Let  iB : i I  be a 

open*   cover of  Y , .   Since f  is 

irresolute* .   Therefore   if B : i I 1  is a 

open*   cover of  X , .  As   X ,  is 

Lindelof*   space. the open*   cover  

  if B : i I 1  of  X ,   has a countable sub cover 

say   if B : i I 1
0  for some countable set I I .0  

Therefore   iX f B : i I , 1
0U  which implies 

   if X B : i I ,  0U  so that  iY B : i I .  0U  That is 

 :iB i I 0  a countable sub cover of  iB : i I  for Y. 

Hence  Y ,  is a Lindelof*   space. 

Theorem 5.9.  If  X ,   is Lindelof*   space and 

countably compact*   space, then  X ,  is 

compact*   space. 

Proof .  Suppose  X ,   is Lindelof*   space and 

countably compact*   space. Let  iA : i I  be a

open*   cover of  X , .  Since  X ,   is 

Lindelof*   space,  iA : i I  has a countable sub 

cover say  iA : i I0  for some countable set I I .0  

Therefore  iA : i I0  is a countable open*   cover 

of  X , .  Again, since  X ,  is countably 

compact*   space,  iA : i I0  has a finite sub cover 

and say  iA : i , , ,...,n .1 2 3  Therefore 

 iA : i , , ,...,n1 2 3  is a finite sub cover of  iA : i I  

for  X , .  Hence  X ,  is a compact*  space. 

Theorem 5.10.  If a function    f : X , Y ,   is 

irresolute*   and a subset A  of X  is Lindelof*   

relative to X , then  f A  is Lindelof*  relative to 

Y.   
Proof .  Let  iB : i I  be a cover of  f A  by 

open*   subsets of Y. By hypothesis f  is 

irresolute*   and so   if B : i I 1  is a cover of A  

by open*   subsets of X . Since A  is Lindelof*   

relative to X ,   if B : i I 1  has a countable sub 

cover say   if B : i I 1
0  for A, where I0  is a 

countable subset of I .  Now  iB : i I 0  is a countable 
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sub cover of  iB : i I  for  f A . So  f A  is 

Lindelof*   relative to Y. 

 

6 Almost * Compact Spaces   

Definition 6.1.  A topological space  X ,  is called 

almost compact*     Lindelof*   provided that 

every open*   cover of X has a finite (countable) sub 

collection, the closure*   of whose members cover 

X . 
The proofs of the following four propositions are 
straightforward and therefore will be omitted. 
Proposion 6.2.  Every almost compact*   space is 

almost Lindelof*   space. 

Proposion 6.3.  Every compact*   space 

 Lindelof space*   is almost  compact* 

 almost Lindelof* .   

Proposion 6.4.  Any finite (countable) topological space 

 X ,    is almost compact* 

 almost Lindelof* .   

Proposition 6.5.  A finite (countable) union of almost 

compact*   almost Lindelof( * )   subsets of 

 X ,   is almost compact*   

 almost Lindelof* .   

Definition 6.6.  A subset E  of  X ,   is called 

clopen*   provided that it is  open*    and  
closed* .   

Theorem 6.7.   Let F  be a clopen*   subset of an 

almost  compact*    almost Lindelof*   space 

 X , .   Then  F  is almost  compact*   

 almost Lindelof* .   

Proof .  Let F  be a clopen*   subset of  an almost  

compact*   space X  and  iG : i I  be  a  

open*    cover of F.  Then cF  is open*   and 

   c
iX G : i I F . U U  Since X  is almost

compact* ,   then there exists a finite subset 0I  of I  

such that    0
c

iX * Cl G : i I F .  U U  Thus it 

follows that    0iF * Cl G : i I .  U  Hence F  is 

almost compact* .   

The proof is similar in case of almost Lindelof* .   

Theorem 6.8.  If A  is an almost compact*   

almost Lindelof( * )   subset of  X ,  and B  is a

open*   subset of  X , then A BI  is almost 

compact*    almost Lindelof* .   

Proof .  Let  iG : i I    be a open*   cover of 

A B.I  Then    c
iA G : i I B . U U  Since A  is 

almost  compact* ,   then there exists a finite subset 

0I  of I  such that    0
c

iA * Cl G : i I B .  U U  

Therefore   0iA B * Cl G : i I .  I U  Thus A BI  

is almost compact* .   

The proof is similar in case of almost Lindelof* .   

Theorem 6.9.  Let a map    f : X , Y ,   be  

irresolute* .   Suppose that A  is almost compact* 

almost Lindelof( * )   subset of X .  Then  f A  is 

almost compact*  almost Lindelof( * ).    

Proof .  Suppose that  iG : i I  is open*   cover of 

 f A . Then    if A G : i I . U  Now, 

  iA f G : i I . 1U  Since   f  is  irresolute* ,    

then    if G : i I 1  is a open*   cover of A.  By 

hypothesis, A  is almost compact* ,   then there exists 

a finite subset 0I  of I  such that 

  iA * Cl f G : i I .     
1

0U  Since f  is 

irresolute* ,   then   i* Cl f G  1  

 if * Cl G ,    
1   for all i I . 0  Hence it follows that  

      i ii I i I
f A f f * Cl G * Cl G , 

 
     0 0

1U U
 which implies that    ii I

f A * Cl G . 
0U  Thus 

 f A  is almost compact* .   

The proof is similar in case of almost Lindelof* .   

Theorem 6.10.  Let    f : X , Y ,   be a 

open*   bijective map and  Y ,  is almost 

compact* .   Then  X ,  is almost compact. 

Proof .  Let  iG : i I  be an open cover of X . Then 

   ii I
f X f G . U  Therefore  ii I

Y f G .U  Now, 
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Y  is almost compact* ,   then there exists a finite 

subset 0I  of I  such that  ii I
Y * Cl f G .    0U  

Since f  is open*   bijective map, then f  is 

closed*   map. Therefore, we have

   i i* Cl f G f Cl G ,           for all i I . 0  Thus 

   i ii I i I
Y f Cl G f Cl G , 

       0 0U U  which implies 

that    ii I
X f Y Cl G .

 
0

1 U  Thus  ii I
X Cl G .

0U  

Hence X  is almost compact. 
Theorem 6.11.  If every collection of closed*   

subsets of  X , ,  satisfying the finite (countable) 

intersection property, has, itself, a non-empty 
intersection, then X  is almost compact*   

 almost Lindelof* .   

Proof .  Let   iG : i I  be a open*   cover of X .  

Suppose  iG : i I  has no finite sub-collection such 

that the closure*   of whose members cover X . Then 

 
1

i n

ii
X I Cl G , 


  U  for any n N.  Therefore 

1

i n

ii
X G .


 U  Now, 

1

n c
ii

G 


I  implies  c
iG : i I  

is a collection of closed*   subsets of X  which has 

the finite intersection property. Thus c
ii I

G 


I  

implies ii I
X G .


U  But this is a contradiction. Hence 

X  is almost compact* .   
A similar proof is given in a case of 
almost Lindelof* .   
 
7 Mildly * Compact Spaces   

Definition 7.1.   A topological space  X ,  is called 

mildly compact*    mildly Lindelof*   provided 

that every clopen*   cover of X  has a finite 
(countable) sub cover. 
Theorem 7.2.  Every mildly compact*   space is 

mildly Lindelof* .   

Proof .  It is straight forward. 
Theorem 7.3.   Every almost compact* 

 almost Lindelof*   space  X ,  is mildly 

compact*    mildly Lindelof* .     

Proof .   Let   iH : i I    be a clopen*    cover of  

 X , .   Since   X ,   is almost compact* ,   then 

there exists a finite subset I0  of I  such that 

 ii I
X * Cl H . 

0U  Now,  i i* Cl H H .    Thus 

 X ,  is mildly compact* .   

A similar proof is given when  X ,  is 

almost Lindelof* .   

Corollary 7.4.  Every compact*    Lindelof*   

space is mildly compact*    mildly Lindelof* .   

Theorem 7.5.   If F  is a clopen*   subset of a mildly 

compact*    mildly Lindelof*   space X , then 

F  is mildly compact*     mildly Lindelof*     

Proof .  Let F  be a clopen*   subset of X  and 

 iG : i I  be a clopen*   cover of F .   Then cF  is 

a clopen*   and ii I
F G .U  Therefore 

  c
ii IX G F . UU  Since X  is mildly compact* ,   

then there exists a finite subset 0I  of I  such that  

  c
ii I

X G F .
0

UU  So  ii I
F G .

0U   Hence F  is 

mildly compact* .    

The proof is similar in a case of mildly Lindelof* .   

Theorem 7.6.  If A  is a mildly compact* 

 mildly Lindelof*   subset of X  and B  is a 

clopen*   subset of X , then A BI  is mildly 

compact*    mildly Lindelof* .   

Proof .  Let  iG : i I    be a clopen*   cover of  

A B.I  Then   c
ii IA G B . UU  Since A  is mildly 

compact* ,   then there exists a finite subset 0I  of I  

such that   c
ii I

A G B .
0

UU  Therefore 

ii I
A B G .

0
I U  Thus A BI  is mildly compact* .   

The proof is similar in case of mildly Lindelof* .   

Theorem 7.7.  If    f : X , Y ,   is a open*   

bijective map and   Y ,  is mildly compact* ,   then 

 X ,  is mildly compact.  

Proof .  Let  iG : i I  be a clopen cover for X .  Then 

   ii I
f X f G . U  Hence  ii I

Y f G .U  Since f  is  

open*   bijective map, then f  is closed* .   

Therefore   if G : i I  is a open*   cover of X .  

Since Y  is mildly compact* ,   then there exists a 

finite subset 0I  of I  such that   ii I
Y f G .

0U  

Therefore ii I
X G .

0U  Thus X  is mildly compact.  
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Proposion 7.8.  A subset A  of  X ,  is mildly 

compact (mildly Lindelof) if and only if   AX ,  is 

mildly compact (mildly Lindelof). 

 

8 * Connected Spaces   

Definition 8.1.  A topological space  X ,  is said to be 

connected if X  cannot be written as a disjoint union of 
two non empty open sets. A subset of  X ,  is 

connected if it is connected as a subspace. 
Definition 8.2.  A topological space  X ,  is said to be 

connected*   if X  cannot be written as a disjoint 

union of two non empty open*   sets. A subset of 

 X ,    is connected*   if it is connected*  as a 

subspace. 
Theorem 8.3.  Every connected*   space  X ,  is 

connected. 
Proof .  Let A  and B  be two non empty disjoint proper 
open sets in X . Since every open set is open*   set. 

Therefore A  and B  are non empty disjoint proper 
open*   sets in X  and X  is connected*   space. 

Hence  X A B. U  Therefore X  is connected* .   

Theorem 8.4.  Let  X ,  be a topological space. Then 

the following statements are equivalent  

 i  X ,   is connected* .   

 ii The only subsets of  X ,  which are both 

open*   and closed*   are the empty set   and X  

 iii  Each continuous*   map of   X ,  into a 

discrete space   Y ,   with at least two points is a 

constant map.  
Proof .     i ii : Let G be a non empty proper 

open*   and closed*   subset of  X , .  Then 

X G  is also both open*   and closed* .   Then 

 X G X G U  is a disjoint union of two non empty 

open*   sets, which contradicts the fact that  X ,   

is connected* .    Hence G   or G X .   

   ii i :  Suppose that X A B U  where A  and B  

are disjoint non empty open*   subsets of   X , .  

Since A X B,   then A  is both  open*   and 

connected* .   By assumption  A  or A X ,which 

is a contradiction. Hence  X ,   is connected* .   

   ii iii :  Let    f : X , Y ,   be a 

continuous*   map, where  Y ,  is discrete space 

with at least two points. Then  f y1  is closed*   

and open*   for each y Y .  Thus  X ,   is covered 

by closed*   and open*   covering 

  1f y : y Y .   By assumption,  f y  1   or 

 f y X 1  for each y Y .  If  f y  1  for each 

y Y ,  then f  fails to be a map. Therefore their exists 

at least one point say *y Y such that   *f y . 1  

Since   *f y1  is also both open*   and 

closed*   set.  Therefore by hypothesis 

  *f y X . 1 This   shows that f  is a constant map.  

   iii ii :  Let G  be both open*   and 

closed*   set in  X , .  Suppose G .   Let 

   f : X , Y ,   be a continuous*   map defined 

by    f G a  and    f X G b    where a b  and 

a, b Y .  By assumption, f  is constant so G X .   

Theorem 8.5.  Suppose    f : X , Y ,   is a

continuous*   surjection and  X ,   is 

connected* .   Then  Y ,   is connected.  

Proof .  Suppose  Y ,  is not connected. Let 

Y A B, U  where A  and B   are disjoint non empty 

open subsets of  Y , .  Since f  is continuous* ,   

   X f A f B ,  1 1U  where  f A1  and  f B1  are 

disjoint non empty open*   subsets of X . This 

disproves the fact that  X ,  is connected* .   Hence 

 Y ,  is  connected. 

Theorem 8.6.  Suppose    f : X , Y ,   is a  

irresolute*   surjection and   X ,   is 

connected* .   Then Y  is connected* .   

Proof .  Suppose that Y  is not connected* .   Let 

Y A B, U  where A  and B  are disjoint non empty 

open*   sets in Y.  Since f  is irresolute*   map 

and onto,    X f A f B ,  1 1U  where  f A1  and 
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 f B1 are disjoint non empty open*   sets in 

 X , .  This contradicts the fact that  X ,  is 

connected* .   Hence  Y ,  is connected* .   

Theorem 8.7.  If every closed*   set in X  is closed 

in X  and X  is connected, then X  is connected* .   

Proof .  Suppose that X  is connected. Then X  cannot 
be expressed as a disjoint union of two nonempty proper 
open subset of X .  Let X  be not connected*   space. 

Let A  and B  be any two non empty open*   subsets 

of X  such that X A B, U  where  A B .I   Since 

every closed*   set in X  is closed in X .  Therefore 

every open*   set in X  is  open in X .  Hence A  and 

B  are open subsets of X , which contradicts that X  is 
connected. Therefore X  is connected* .    

Theorem 8.8.  Every connected*   space  X ,  is 

mildly compact* .   

Proof .  Since  X ,  is connected*   then the only 

clopen*   subsets of   X ,  are X  and .  

Therefore  X ,  is mildly compact* .    

Theorem 8.9.   If two open*   sets C and D  form a 

separation of X  and if Y  is connected*  subspace of 

X , then Y  lies entirely within C  or D.   
Proof .  By hypothesis C  and D  are both open*   

sets in X .  The sets C YI and D YI  are open*   in 
Y ,  these two sets are disjoint and their union is Y .  If 
they were both non empty, they would constitute a 
separation of Y. Therefore, one of them is empty. Hence 
Y  must lie entirely in C  or D.  
Theorem 8.10.  Let A  be a connected*   subspace 

of X .  If  A B * Cl A ,    then B  is also 

connected* .   

Proof .  Let A  be connected* .   Let 

 A B * Cl A .    Suppose that B C D U  is a 

separation of B  by open*   sets. Thus by previous 

theorem A  must lie entirely in C  or D.  Suppose that 
A C,  then it implies that    * Cl A * Cl C .     

Since  * Cl C   and D  are disjoint, B  cannot 

intersect D.  This disproves the fact that D  is non empty 
subset of B.  So D   which implies B is 

connected* .   
 
9 Conclusion  

We have used open*   sets to introduce the new 
concepts of notions in topological spaces namely 

compact*   space, countably compact*   space, 

Lindelof*   space, almost compact*   space, 

mildly  compact*   space and connected*   space 
and have investigated several properties and 
characterizations of these new concepts.  
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